
EXECUTIVE SUMMARY ... 2

BUSTING THE MYTHS .. 3

Myth: There’s Safety In Small Numbers...3
Myth: Open Source is Inherently Dangerous..5
Myths: Conclusions Based on Single Metrics..5

WINDOWS VS. LINUX DESIGN .. 7

Windows Design...7
Windows has only recently evolved from a single-user design to a multi-user model ...7
Windows is Monolithic by Design, not Modular..8
Windows Depends Too Heavily on the RPC model...8
Windows focuses on its familiar graphical desktop interface...10

Linux Design ..11
Linux is based on a long history of well fleshed-out multi-user design..11
Linux is Modular by Design, not Monolithic ...12
Linux is Not Constrained by an RPC Model ..12
Linux servers are ideal for headless non-local administration..12

REALISTIC SECURITY AND SEVERITY METRICS ... 14

Elements of an Overall Severity Metric...14
Overall Severity Metric and Interaction Between the Three Key Metrics..14
The Exception To The Rule..14
Applying The Overall Severity Metric ...15

Means Of Evaluating Metrics...16
Exposure Potential ..16
Exploitation Potential ...16
Damage Potential..17
Overall Severity Risk..17

Additional Considerations ..18
Application Imbalance..18
Setup and Administration ...18

A COMPARISON OF 40 RECENT SECURITY PATCHES.. 18

Patches and Vulnerabilities Affecting Microsoft Windows Server 2003 ..19
Patches and Vulnerabilities Affecting Red Hat Enterprise Linux AS v.3 ..24

CERT VULNERABILITY NOTES DATABASE RESULTS.. 29

REFERENCES.. 30

REFERENCES.. 30

Executive Summary
Much ado has been made about whether or not Linux is truly more secure than Windows. We compared

Windows vs. Linux by examining the following metrics in the 40 most recent patches/vulnerabilities listed for
Microsoft Windows Server 2003 vs. Red Hat Enterprise Linux AS v.3:

1. The severity of security vulnerabilities, derived from the following metrics:

a. damage potential (how much damage is possible?)
b. exploitation potential (how easy is it to exploit?)
c. exposure potential (what kind of access is necessary to exploit the vulnerability?)

2. The number of critically severe vulnerabilities

The results were not unexpected. Even by Microsoft’s subjective and flawed standards, fully 38% of the

most recent patches address flaws that Microsoft ranks as Critical. Only 10% of Red Hat’s patches and alerts address
flaws of Critical severity. These results are easily demonstrated to be generous to Microsoft and arguably harsh
with Red Hat, since the above results are based on Microsoft’s ratings rather than our more stringent application of
the security metrics. If we were to apply our own metrics, it would increase the number of Critical flaws in
Windows Server 2003 to 50%.

We queried the United States Computer Emergency Readiness Team (CERT) database, and the CERT data

confirms our conclusions by a more dramatic margin. When we queried the database to present results in order of
severity from most critical to least critical, 39 of the first 40 entries in the CERT database for Windows are rated
above the CERT threshold for a severe alert. Only three of the first 40 entries were above the threshold when we
queried the database about Red Hat. When we queried the CERT database about Linux, only 6 of the first 40 entries
were above the threshold.

Consider also that both the Red Hat and Linux lists include flaws in software that runs on Windows, which
means these flaws apply to both Linux and Windows. None of the alerts associated with Windows affect software
that runs on Linux.

So why have there been so many credible-sounding claims to the contrary, that Linux is actually less secure

than Windows? There are glaring logical holes in the reasoning behind the conclusion that Linux is less secure. It
takes only a little scrutiny to debunk the myths and logical errors behind the following oft-repeated axioms:

1. Windows only suffers so many attacks because there are more Windows installations than Linux,

therefore Linux would be just as vulnerable if it had as many installations
2. Open source is inherently less secure because malicious hackers can find flaws more easily
3. There are more security alerts for Linux than for Windows, therefore Linux is less secure than

Windows
4. There is a longer time between the discovery of a flaw and a patch for the flaw with Linux than with

Windows

The error behind axioms 3 and 4 is that they ignore the most important metrics for measuring the relative

security of one operating system vs. another. As you will see in our section on Realistic Security and Severity
Metrics, measuring security by a single metric (such as how long it takes between the discovery of a flaw and a
patch release) produces meaningless results.

Finally, we also include a brief overview of relevant conceptual differences between Windows and Linux,
to offer an insight into why Windows tends to be more vulnerable to attacks at both server and desktop, and why
Linux is inherently more secure.

Busting The Myths

Myth: There’s Safety In Small Numbers

Perhaps the most oft-repeated myth regarding Windows vs. Linux security is the claim that Windows has
more incidents of viruses, worms, Trojans and other problems because malicious hackers tend to confine their
activities to breaking into the software with the largest installed base. This reasoning is applied to defend Windows
and Windows applications. Windows dominates the desktop; therefore Windows and Windows applications are the
focus of the most attacks, which is why you don’t see viruses, worms and Trojans for Linux. While this may be
true, at least in part, the intentional implication is not necessarily true: That Linux and Linux applications are no
more secure than Windows and Windows applications, but Linux is simply too trifling a target to bother attacking.

This reasoning backfires when one considers that Apache is by far the most popular web server software on
the Internet. According to the September 2004 Netcraft web site survey,1 68% of web sites run the Apache web
server. Only 21% of web sites run Microsoft IIS. If security problems boil down to the simple fact that malicious
hackers target the largest installed base, it follows that we should see more worms, viruses, and other malware
targeting Apache and the underlying operating systems for Apache than for Windows and IIS. Furthermore, we
should see more successful attacks against Apache than against IIS, since the implication of the myth is that the
problem is one of numbers, not vulnerabilities.

Yet this is precisely the opposite of what we find, historically. IIS has long been the primary target for
worms and other attacks, and these attacks have been largely successful. The Code Red worm that exploited a
buffer overrun in an IIS service to gain control of the web servers infected some 300,000 servers, and the number of
infections only stopped because the worm was deliberately written to stop spreading. Code Red.A had an even faster
rate of infection, although it too self-terminated after three weeks. Another worm, IISWorm, had a limited impact
only because the worm was badly written, not because IIS successfully protected itself.

Yes, worms for Apache have been known to exist, such as the Slapper worm. (Slapper actually exploited a
known vulnerability in OpenSSL, not Apache). But Apache worms rarely make headlines because they have such a
limited range of effect, and are easily eradicated. Target sites were already plugging the known OpenSSL hole. It
was also trivially easy to clean and restore infected site with a few commands, and without as much as a reboot,
thanks to the modular nature of Linux and UNIX.

Perhaps this is why, according to Netcraft, 47 of the top 50 web sites with the longest running uptime
(times between reboots) run Apache.2 None of the top 50 web sites runs Windows or Microsoft IIS. So if it is true
that malicious hackers attack the most numerous software platforms, that raises the question as to why hackers are
so successful at breaking into the most popular desktop software and operating system, infect 300,000 IIS servers,
but are unable to do similar damage to the most popular web server and its operating systems?

Astute observers who examine the Netcraft web site URL will note that all 50 servers in the Netcraft
uptime list are running a form of BSD, mostly BSD/OS. None of them are running Windows, and none of them are
running Linux. The longest uptime in the top 50 is 1,768 consecutive days, or almost 5 years.

This appears to make BSD look superior to all operating systems in terms of reliability, but the Netcraft
information is unintentionally misleading. Netcraft monitors the uptime of operating systems based on how those
operating systems keep track of uptime. Linux, Solaris, HP-UX, and some versions of FreeBSD only record up to
497 days of uptime, after which their uptime counters are reset to zero and start again. So all web sites based on
machines running Linux, Solaris, HP-UX and in some cases FreeBSD “appear” to reboot every 497 days even if
they run for years. The Netcraft survey can never record a longer uptime than 497 days for any of these operating
systems, even if they have been running for years without a reboot, which is why they never appear in the top 50.

That may explain why it is impossible for Linux, Solaris and HP-UX to show up with as impressive
numbers of consecutive days of uptime as BSD -- even if these operating systems actually run for years without a
reboot. But it does not explain why Windows is nowhere to be found in the top 50 list. Windows does not reset its
uptime counter. Obviously, no Windows-based web site has been able to run long enough without rebooting to rank
among the top 50 for uptime.

Given the 497-rollover quirk, it is difficult to compare Linux uptimes vs. Windows uptimes from publicly
available Netcraft data. Two data points are statistically insignificant, but they are somewhat telling, given that one
of them concerns the Microsoft website. As of September 2004, the average uptime of the Windows web servers

1 See References section below for the Netcraft URLs from which this data was drawn.
2 See References section below for the Netcraft URL for this data

that run Microsoft’s own web site (www.microsoft.com) is roughly 59 days. The maximum uptime for Windows
Server 2003 at the same site is 111 days, and the minimum is 5 days. Compare this to www.linux.com (a sample site
that runs on Linux), which has had both an average and maximum uptime of 348 days. Since the average uptime is
exactly equal to the maximum uptime, either these servers reached 497 days of uptime and reset to zero 348 days
ago, or these servers were first put on-line or rebooted 348 days ago.

The bottom line is that quality, not quantity, is the determining factor when evaluating the number of
successful attacks against software.

Myth: Open Source is Inherently Dangerous

The impressive uptime record for Apache also casts doubt on another popular myth: That open source code
(where the blueprints for the applications are made public) is more dangerous than proprietary source code (where
the blueprints are secret) because hackers can use the source code to find and exploit flaws.

The evidence begs to differ. The number of effective Windows-specific viruses, Trojans, spyware, worms
and malicious programs is enormous, and the number of machines repeatedly infected by any combination of the
above is so large it is difficult to quantify in realistic terms. Malicious software is so rampant that the average time
it takes for an unpatched Windows XP to be compromised after connecting it directly to the Internet is 16 minutes --
less time than it takes to download and install the patches that would help protect that PC. 3

As another example, the Apache web server is open source. Microsoft IIS is proprietary. In this case, the
evidence refutes both the “most popular” myth and the “open source danger” myth. The Apache web server is by
far the most popular web server. If these two myths were both true, one would expect Apache and the operating
systems on which it runs to suffer far more intrusions and problems than Microsoft Windows and IIS. Yet precisely
the opposite is true. Apache has a near monopoly on the best uptime statistics. Neither Microsoft Windows nor
Microsoft IIS appear anywhere in the top 50 servers with the best uptime. Obviously, the fact that malicious hackers
have access to the source code for Apache does not give them an advantage for creating more successful attacks
against Apache than IIS.

Myths: Conclusions Based on Single Metrics

The remaining popular myths regarding the relative security of Windows vs. Linux are flawed by the fact
that they are based only on a single metric -- a single aspect of measuring security. This is true whether the data
comes from actual research, anecdotal information or even urban myth.

One popular claim is that, “there are more security alerts for Linux than for Windows, and therefore Linux
is less secure than Windows”. Another is, “The average time that elapses between discovery of a flaw and when a
patch for that flaw is released is greater for Linux than it is for Windows, and therefore Linux is less secure than
Windows.”

The latter is the most mysterious of all. It is an imponderable mystery how anyone can reach the conclusion
that Microsoft’s average response time between discovery of a flaw and releasing the fix for that flaw is superior to
that of any competing operating system, let alone superior to Linux. Microsoft took seven months to fix one of its
most serious security vulnerabilities (Microsoft Security Bulletin MS04-007 ASN.1 Vulnerability, eEye Digital
Security publishes the delay in advisory AD20040210), and there are flaws Microsoft has openly stated it will never
repair. The Microsoft Security Bulletin MS03-010 about the Denial Of Service vulnerability in Windows NT says
this will never be repaired. More recently, Microsoft stated that it would not repair Internet Explorer vulnerabilities
for any operating systems older than Windows XP. Statistically speaking, seven months between discovery and fix
might not have an overly dramatic effect on the average response time if you can find enough samples of excellent
response times to offset anomalies like this, assuming they are anomalies. But it only takes one case of “never” to
upset the statistical average beyond recovery.

This unsolvable mystery aside, consider whether it is meaningful to suggest that Linux is a greater security
risk than Windows because the average time between the discovery of vulnerability and the release of a patch is
greater with Linux than with Windows. Ask yourself this question: If you experienced a heart attack at this very
moment, to which hospital emergency room would you rather be taken? Would you want to go to the one with the
best average response time from check-in to medical treatment? Or would you rather be taken to an emergency
room with a poor record for average response time, but where the patients with the most severe medical problems
always get immediate attention?

One would obviously choose the latter, but not necessarily because the above information proves it is the
better emergency room. The latter choice is preferable because it includes two metrics, one of which is more
important to you at that precise moment. It is safe to assume that most people would avoid a hospital if they also
knew they were likely to die of a heart attack waiting for a doctor to finish setting someone’s fractured pinky, no
matter how impressive the average response time for every medical emergency may be. The problem is that the
above example doesn’t give you sufficient information to make the best decision. It doesn’t tell you how well the

3 Unpatched PC “Survival Time” Just 16 Minutes, by Greek Keiser, TechWeb News. See references section below
for URL.

hospital with the best average response time prioritizes its cases. You would also benefit from knowing things like
the mortality rate of emergency cases, the average skill of the resident physicians, and so on.

Obviously, the only way to produce a useful recommendation is to gather as many important metrics as
possible about local emergency rooms, and then balance these metrics intelligently. It would be inexcusably
irresponsible to recommend an emergency room for a heart attack based only on a single metric such as the average
response time for all medical emergencies, especially when the other important information that would lead to a
more ideal choice is readily available.

It is equally irrational and irresponsible to make a recommendation or a serious business decision based
solely on a single metric such as the average elapsed time between a flaw’s detection and fix for a given operating
system, or the number of security alerts for any given product.

Any single metric is misleading in terms of importance. Let’s consider the statement that there are more
alerts for Linux software than Windows. This statistic is meaningless because it leaves the most important questions
unanswered. Of all the security alerts, how many of the reported flaws represent a tangible risk? How severe are
those risks? How likely are they to expose your systems to serious damage? These questions are important. Which
is preferable: An operating system with 100 flaws that expose your systems to little or no damage and cannot be
exploited by anyone except local users with a valid login account and physical access to your machine? Or would
you prefer an operating system with 1 critical flaw that allows any malicious hacker on the Internet to wipe out all of
the information on your server? Clearly, the number of alerts alone is not a meaningful metric for the security of one
operating system over another.

Windows vs. Linux Design
It is possible that email and browser-based viruses, Trojans and worms are the source of the myth that

Windows is attacked more often than Linux. Clearly there are more desktop installations of Windows than Linux.
It is certainly possible, if not probable, that Windows desktop software is attacked more often because Windows
dominates the desktop. But this leaves an important question unanswered. Do the attacks so often succeed on
Windows because the attacks are so numerous, or because there are inherent design flaws and poor design decisions
in Windows?

Many, if not most of the viruses, Trojans, worms and other malware that infect Windows machines do so
through vulnerabilities in Microsoft Outlook and Internet Explorer. To put the question another way, given the same
type of desktop software on Linux (the most often used web browsers, email, word processors, etc.), Are there as
many security vulnerabilities on Linux as Windows?

Windows Design

Viruses, Trojans and other malware make it onto Windows desktops for a number of reasons familiar to
Windows and foreign to Linux:

1. Windows has only recently evolved from a single-user design to a multi-user model
2. Windows is monolithic, not modular, by design
3. Windows depends too heavily on an RPC model
4. Windows focuses on its familiar graphical desktop interface

WINDOWS HAS ONLY RECENTLY EVOLVED FROM A SINGLE-USER DESIGN TO A MULTI-USER MODEL

Critics of Linux are fond of saying that Linux is “old” technology. Ironically, one of the biggest problems
with Windows is that it hasn’t been able to escape its “old” legacy single-user design. Windows has long been
hampered by its origin as a single-user system. Windows was originally designed to allow both users and
applications free access to the entire system, which means anyone could tamper with a critical system program or
file. It also means viruses, Trojans and other malware could tamper with any critical system program or file,
because Windows did not isolate users or applications from these sensitive areas of the operating system.

Windows XP was the first version of Windows to reflect a serious effort to isolate users from the system,
so that users each have their own private files and limited system privileges. This caused many legacy Windows
applications to fail, because they were used to being able to access and modify programs and files that only an
administrator should be able to access. That’s why Windows XP includes a compatibility mode – a mode that
allows programs to operate as if they were running in the original insecure single-user design. This is also why each
new version of Windows threatens to break applications that ran on previous versions. As Microsoft is forced to
hack Windows into behaving more like a multi-user system, the new restrictions break applications that are used to
working without those restraints.

Windows XP represented progress, but even Windows XP could not be justifiably referred to as a true
multi-user system. For example, Windows XP supports what Microsoft calls “Fast User Switching”, which means
that two or more people can log into a Windows XP system on a single PC at the same time. Here’s the catch. This
is only possible if and only if the PC is not set up to be part of a Windows network domain. That’s because
Microsoft networking was designed under the assumption that people who log into a network will do so from their
own PC. Microsoft was either unable or unwilling to make the necessary changes to the operating system and
network design to accommodate this scenario for Windows XP.

Windows Server 2003 makes some more progress toward true multi-user capabilities, but even Windows
Server 2003 hasn’t escaped all of the leftover single-user security holes. That’s why Windows Server 2003 has to
turn off many browser capabilities (such as ActiveX, scripting, etc.) by default. If Microsoft had redesigned these
features to work in a safe, isolated manner within a true multi-user environment, these features would not present the
severe risks that continue to plague Windows.

WINDOWS IS MONOLITHIC BY DESIGN, NOT MODULAR

A monolithic system is one where most features are integrated into a single unit. The antithesis of a
monolithic system is one where features are separated out into distinct layers, each layer having limited access to the
other layers.

While some of the shortcomings of Windows are due to its ties to its original single-user design, other
shortcomings are the direct result of deliberate design decisions, such as its monolithic design (integrating too many
features into the core of the operating system). Microsoft made the Netscape browser irrelevant by integrating
Internet Explorer so tightly into its operating system that it is almost impossible not to use IE. Like it or not, you
invoke Internet Explorer when you use the Windows help system, Outlook, and many other Microsoft and third-
party applications. Granted, it is in the best business interest of Microsoft to make it difficult to use anything but
Internet Explorer. Microsoft successfully makes competing products irrelevant by integrating more and more of the
services they provide into its operating system. But this approach creates a monster of inextricably interdependent
services (which is, by definition, a monolithic system).

Interdependencies like these have two unfortunate cascading side effects. First, in a monolithic system,
every flaw in a piece of that system is exposed through all of the services and applications that depend on that piece
of the system. When Microsoft integrated Internet Explorer into the operating system, Microsoft created a system
where any flaw in Internet Explorer could expose your Windows desktop to risks that go far beyond what you do
with your browser. A single flaw in Internet Explorer is therefore exposed in countless other applications, many of
which may use Internet Explorer in a way that is not obvious to the user, giving the user a false sense of security.

This architectural model has far deeper implications that most people may find difficult to grasp, one being
that a monolithic system tends to make security vulnerabilities more critical than they need to be.

Perhaps an admittedly oversimplified visual analogy may help. Think of an ideally designed operating
system as being comprised of three spheres, one in the center, another larger sphere that envelops the first, and a
third sphere that envelope the inner two. The end-user only sees the outermost sphere. This is the layer where you
run applications, like word processors. The word processors make use of commonly needed features provided by
the second sphere, such as the ability to render graphical images or format text. This second sphere (usually referred
to as “userland” by technical geeks) cannot access vulnerable parts of the system directly. It must request
permission from the innermost sphere in order to do its work. The innermost sphere has the most important job, and
therefore has the most direct access to all the vulnerable parts of your system. It controls your computer’s disks,
memory, and everything else. This sphere is called the “kernel”., and is the heart of the operating system.

In the above architecture, a flaw in the graphics rendering routines cannot do global damage to your
computer because the rendering functions do not have direct access to the most vulnerable system areas. So even if
you can convince a user to load an image with an embedded virus into the word processor, the virus cannot damage
anything except the user’s own files, because the graphical rendering feature lies outside the innermost sphere, and
does not have permission to access any of the critical system areas.

The problem with Windows is that does not follow sensible design practices in separating out its features
into the appropriate layers represented by the spheres described above. Windows puts far too many features into the
core, central sphere, where the most damage can be done. For example, if one integrates the graphics rendering
features into the innermost sphere (the kernel), it gives the graphical rendering feature the ability to damage the
entire system. Thus, when someone finds a flaw in a graphics-rendering scheme, the overly integrated architecture
of Windows makes it easy to exploit that flaw to take complete control of the system, or destroy the entire system.

Finally, a monolithic system is unstable by nature. When you design a system that has too many
interdependencies, you introduce numerous risks when you change one piece of the system. One change may (and
usually does) have a cascading effect on all of the services and applications that depend on that piece of the system.
This is why Windows users cringe at the thought of applying patches and updates. Updates that fix one part of
Windows often break other existing services and applications. Case and point: The Windows XP service pack 2
already has a growing history of causing existing third-party applications to fail. This is the natural consequence of
a monolithic system – any changes to one part of the machine affect the whole machine, and all of the applications
that depend on the machine.

WINDOWS DEPENDS TOO HEAVILY ON THE RPC MODEL

RPC stands for Remote Procedure Call. Simply put, an RPC is what happens when one program sends a
message over a network to tell another program to do something. For example, one program can use an RPC to tell
another program to calculate the average cost of tea in China and return the answer. The reason it’s called a remote

procedure call is because it doesn’t matter if the other program is running on the same machine, another machine in
the next cube, or somewhere on the Internet.

RPCs are potential security risks because they are designed to let other computers somewhere on a network
to tell your computer what to do. Whenever someone discovers a flaw in an RPC-enabled program, there is the
potential for someone with a network-connected computer to exploit the flaw in order to tell your computer what to
do. Unfortunately, Windows users cannot disable RPC because Windows depends upon it, even if your computer is
not connected to a network. Many Windows services are simply designed that way. In some cases, you can block
an RPC port at your firewall, but Windows often depends so heavily on RPC mechanisms for basic functions that
this is not always possible. Ironically, some of the most serious vulnerabilities in Windows Server 2003 (see table in
section below) are due to flaws in the Windows RPC functions themselves, rather than the applications that use
them. The most common way to exploit an RPC-related vulnerability is to attack the service that uses RPC, not
RPC itself.

It is important to note that RPCs are not always necessary, which makes it all the more mysterious as to
why Microsoft indiscriminately relies on them. Assume for a moment that you create a web site using two servers.
One server is a dedicated database server, and the other server is a dedicated web server. In this case, it is necessary
for the database server to use RPCs, because the web server is on a separate machine and must be able to access the
database server over the network connection. (Even in this case, one should configure the database server to “listen”
only to the web server, and no other machine.) If you run both the database server and web server on the same
machine, however, it is not only unnecessary for the database server to use RPCs, it is unwise to do so. The web
server should be able to access the database server directly, because the two are running on the same machine.
There is no technical or logical reason to expose the database server to the network, because it presents an
unnecessary security risk.

We raise the issue of database servers because the Slammer worm, one of the most profoundly dangerous
worms ever to hit the Internet, exploited one of the most inappropriate uses of RPC-like network communications
ever implemented by Microsoft. Slammer infected so many systems so quickly that it practically brought the
Internet to a standstill.

The Slammer worm caused havoc by exploiting two flaws in Microsoft SQL Server, a client/server SQL
database server. One flaw was a most improbable feature of Microsoft SQL Server – one that allows you to run
more than one instance of the database server at a time on a single machine. Here is why it is improbable. If you’re
not familiar with database servers, picture it this way. Under normal conditions, it makes no sense to run multiple
instances of a database server on a single machine, because one instance is all that is needed, even if many different
applications use it. One would be as likely to want to run two copies of Windows XP on a single machine at the
same time as want to run multiple database servers on a single machine at the same time. One rarely runs multiple
instances of a database server on purpose, except in high-end applications or for testing and development. 4

The easy way to allow multiple instances of SQL Server to run simultaneously without interfering with one
another is to create an RPC mechanism that sorts out requests for data, so that a fax application queries its own copy

4 We suspect we know why Microsoft chose to implement this as the default behavior of SQL Server. Many third-
party applications use the SQL Server engine by default. If everyone who wrote applications for SQL Server
assumed that there would be a single instance of SQL Server running on the machine, Microsoft would have to
provide an easy way for the installation programs to detect that SQL Server was already installed and running, and
then provide an easy way to install, integrate and administer the applications’ specific requirements for its own
database and tables running on the existing server. This is the elegant solution, and it uses up a minimum of
resources because only one instance of SQL Server is ever needed. But this approach would require a good deal of
extra work on the part of Microsoft or on the part of the third-party developers. It was much easier to design a way
to allow third party applications to avoid bothering with the issue of whether or not SQL Server is already installed.
Given the design Microsoft implemented, any third party can simply install its own copy of SQL Server without
worrying about whether or not SQL Server already exists on the target machine, what version of SQL Server is
already installed, or how the SQL Server is already configured. In short, rather than do things right, and in an effort
to entice third parties to use SQL Server, Microsoft took the lazy way out and designed a system where any
application could install its own private copy of SQL Server without its operation interfering with the other copies of
SQL Server running on the same system. This led to the desire to run several instances of SQL Server with RPC
enabled, which should actually have a very narrow audience. This lazy approach had terribly unfortunate
consequences. If Microsoft had designed SQL Server to run as a single instance without network connections by
default, the Slammer worm would not have been able to find enough machines running SQL Server to do any
significant damage.

of SQL Server, and a time-billing application queries yet another copy of SQL Server. To complicate matters,
Microsoft development tools encourage the same monolithic approach Microsoft uses, so a broad range of
applications – time-billing software, fax software, project management – almost 200 applications, many of them
desktop applications, use the unnecessarily vulnerable SQL Server engine. As a result, hundreds of thousands, if not
millions, of people use desktop applications that depend on the SQL Server engine with multiple network services
enabled, many of which are exposed to the Internet. One could hardly concoct a better recipe for disaster.

As a result, Slammer found countless machines to attack because these features are enabled by default on
every SQL Server engine. While SQL Server is not yet integrated into Windows, its ubiquity across applications
from fax software to time billing software made it effectively a part of a larger monolithic system, thus opening the
way to an attack path that is symptomatic of a monolithic system. Unfortunately, SQL Server is likely to be tightly
integrated into the upcoming new Windows File System WinFS originally slated for Longhorn. If anyone thinks
integrating SQL Server into the operating system is a good idea, they should consider what happened with the
Slammer worm.

WINDOWS FOCUSES ON ITS FAMILIAR GRAPHICAL DESKTOP INTERFACE

Microsoft considers its familiar Windows interface as the number one benefit for using Windows Server
2003.5 To quote from the Microsoft web site, “With its familiar Windows interface, Windows Server 2003 is easy to
use. New streamlined wizards simplify the setup of specific server roles and routine server management tasks…”

By advocating this type of usage, Microsoft invites administrators to work with Windows Server 2003 at
the server itself, logged in with Administrator privileges. This makes the Windows administrator most vulnerable to
security flaws, because using vulnerable programs such as Internet Explorer expose the server to security risks.

5 See References section for URL to the “Top 10 Benefits of Windows Server 2003” page at the Microsoft web site.

Linux Design

According to the Summer 2004 Evans Data Linux Developers Survey, 93% of Linux developers have
experienced two or fewer incidents where a Linux machine was compromised. Eighty-seven percent had
experienced only one such incident, and 78% have never had a cracker break into a Linux machine. In the few cases
where intruders succeeded, the primary cause was inadequately configured security settings.

More relevant to this discussion, however, is the fact that 92% of those surveyed have never experienced a
virus, Trojan, or other malware infection on Linux.

Viruses, Trojans and other malware rarely, if ever, manage to infect Linux systems, in part because:

1. Linux is based on a long history of well fleshed-out multi-user design
2. Linux is mostly modular by design
3. Linux does not depend upon RPC to function, and services are usually configured not to use RPC by

default
4. Linux servers are ideal for headless non-local administration

Keep in mind when reading the summaries below that there are variations in the default configurations of

the different distributions of Linux, so what may be true of Red Hat Linux may not be true of Debian and there may
be even more differences in SuSE. For the most part, all the major Linux distributions tend to follow sane
guidelines in the default configurations.

LINUX IS BASED ON A LONG HISTORY OF WELL FLESHED-OUT MULTI-USER DESIGN

Linux does not have a history of being a single-user system. Therefore it has been designed from the
ground-up to isolate users from applications, files and directories that affect the entire operating system. Each user
is given a user directory where all of the user’s data files and configuration files are stored. When a user runs an
application, such as a word processor, that word processor runs with the restricted privileges of the user. It can only
write to the user’s own home directory. It cannot write to a system file or even to another user’s directory unless the
administrator explicitly gives the user permission to do so.

Even more important, Linux provides almost all capabilities, such as the rendering of JPEG images, as
modular libraries. As a result, when a word processor renders JPEG images, the JPEG rendering functions will run
with the same restricted privileges as the word processor itself. If there is a flaw in the JPEG rendering routines, a
malicious hacker can only exploit this flaw to gain the same privileges as the user, thus limiting the potential
damage. This is the benefit of a modular system, and it follows more closely the spherical analogy of an ideally
designed operating system (see the section Windows is Monolithic by Design, not Modular).

Given the default restrictions in the modular nature of Linux; it is nearly impossible to send an email to a
Linux user that will infect the entire machine with a virus. It doesn’t matter how poorly the email client is designed
or how badly it may behave – it only has the privileges to infect or damage the user’s own files. Linux browsers do
not support inherently insecure objects such as ActiveX controls, but even if they did, a malicious ActiveX control
would only run with the privileges of the user who is running the browser. Once again, the most damage it could do
is infect or delete the user’s own files.

Even services, such as web servers, typically run as users with restricted privileges. For example, Debian
GNU/Linux runs the Apache server as the user “www-data”, who belongs to a group with the same name, “www-
data”. If a malicious hacker manages to gain complete control over the Apache web server on a Debian system, that
hacker can only affect files owned by the user “www-data”, such as web pages. In turn, the MySQL SQL database
server often used in conjunction with Apache, runs with the privileges of the user “mysql”. So even if Apache and
MySQL are used together to serve web pages, a malicious hacker who gains control of Apache does not have the
privileges to exploit the Apache hole in order to gain control of the database server, because the database server is
“owned” by another user.

In addition, users associated with services such as Apache, MySQL, etc., are often set up with user
accounts that have no access to a command line. So if a malicious hacker somehow breaks into the MySQL user
account, that hacker cannot exploit that vulnerability to issue arbitrary commands to the Linux server, because that
account has no ability to issue commands.

In sharp contrast, Windows was originally designed to allow all users and applications to have
administrator access to every file on the system. Windows has only gradually been re-worked to isolate users and
what they do from the rest of the system. Windows Server 2003 is close to achieving this goal, but the methodology

Microsoft has employed to create this barrier between user and system is still largely composed of constantly
changing hacks to the existing design, rather than a fundamental redesign with multi-user capability and security as
the foundational concept behind the system.

LINUX IS MODULAR BY DESIGN, NOT MONOLITHIC

Linux is for the most part a modularly designed operating system, from the kernel (the core “brains” of
Linux) to the applications. Almost nothing in Linux is inextricably intertwined with anything else. There is no
single browser engine used by help systems or email programs. Indeed, it is easy to configure most email programs
to use a built-in browser engine to render HTML messages, or launch any browser you wish to view HTML
documents or jump to links included in an email message. Therefore a flaw in one browser engine does not
necessarily present a danger to any other application on the system, because few if any other applications besides the
browser itself must depend on a single browser engine.

Not everything in Linux is modular. The two most popular graphical desktops, KDE and GNOME, are
somewhat monolithic by design; at least enough so that an update to one part of GNOME or KDE can potentially
break other parts of GNOME or KDE. Neither GNOME nor KDE are so monolithic, however, as to require you to
use GNOME or KDE-specific applications. You can run GNOME applications or any other applications under
KDE, and you can run KDE or any other applications under GNOME.

The Linux kernel supports modular drivers, but it is essentially a monolithic kernel where services in the
kernel are interdependent. Any adverse impact of this monolithic approach is minimized by the fact that the Linux
kernel is designed to be as minimal a part of the system as possible. Linux follows the following philosophy almost
to a point of fanaticism: “Whenever a task can be done outside the kernel, it must be done outside the kernel.” This
means that almost every useful feature in Linux (“useful” as perceived by an end user) is a feature that does not have
access to the vulnerable parts of a Linux system.

In contrast, bugs in graphics card drivers are a common cause of the Windows blue-screen-of-death. That’s
because Windows integrates graphics into the kernel, where a bug can cause a system failure. With only a few
proprietary exceptions (such as the third-party NVidia graphics driver), Linux forces all graphics drivers to run
outside the kernel. A bug in a graphics driver may cause the graphical desktop to fail, but not cause the entire
system to fail. If this happens, one simply restarts the graphical desktop. One does not need to reboot the computer.

LINUX IS NOT CONSTRAINED BY AN RPC MODEL

As stated above in the section on Windows, RPC stands for Remote Procedure Call. Simply put, an RPC
allows one program to tell another program to do something, even if that other program resides on another
computer. For example, one program can use an RPC to tell another program to calculate the average cost of tea in
China and return the answer. The reason it’s called a remote procedure call is because it doesn’t matter if the other
program is running on the same machine, another machine in the next cube, or somewhere on the Internet.

Most Linux distributions install programs with network access turned off by default. For example, the
MySQL SQL database server is usually installed such that it does not listen to the network for instructions. If you
build a web site using Apache and MySQL on the same server machine, then Apache will interact with MySQL
without MySQL having to listen to the network. Contrast this to SQL Server, which listens to the network whether
or not it is necessary to do so. If you want MySQL to listen to the network, you must turn on that feature manually,
and then explicitly define the users and machines allowed to access MySQL.

Even when Linux applications use the network by default, they are most often configured to respond only
to the local machine and ignore any requests from other machines on the network.

Unlike Windows Server 2003, you can disable virtually all network-related RPC services on a Linux
machine and still have a perfectly functional desktop.

LINUX SERVERS ARE IDEAL FOR HEADLESS NON-LOCAL ADMINISTRATION

A Linux server can be installed, and often should be installed as a “headless” system (no monitor is
connected) and administered remotely. This is often the ideal type of installation for servers because a remotely
administered server is not exposed to the same risks as a locally administered server.

For example, you can log into your desktop computer as a normal user with restricted privileges and
administer the Linux server through a browser-based administration interface. Even the most critical browser-based

security vulnerability affects only your local user-level account on the desktop, leaving the server untouched by the
security hole.

This may be one of the most important differentiating factors between Linux and Windows, because it
virtually negates most of the critical security vulnerabilities that are common to both Linux and Windows systems,
such as the vulnerabilities of the Mozilla browser vs. the Internet Explorer browser.

Realistic Security and Severity Metrics
One needs to examine many metrics in order to evaluate properly the risks involved in adopting one

operating system over another for any given task. Metrics are sometimes cumulative; at other times they offset each
other.

There are three very important metrics, represented as risk factors, which have a profound effect on one
another. The combination of the three can have a dramatic impact on the overall severity of a security flaw. These
three risk factors are damage potential, exploitation potential, and exposure potential.

Elements of an Overall Severity Metric

Damage potential of any given discovered security vulnerability is a measurement of the potential harm
done. A vulnerability that exposes all your administrator passwords has a high damage potential. A flaw that makes
your screen flicker would have a much lower damage potential, raised only if that particular damage is difficult to
repair.

Exploitation potential describes how easy or difficult it is to exploit the vulnerability. Does it require
expert programming skills to exploit this flaw, or can almost anyone with rudimentary computer experience use it
for mischief?

Exposure potential describes the amount of access necessary to exploit a given vulnerability. If any hotshot
hacker (commonly referred to as “script kiddies”) on the Internet can exploit a flaw on a server you have protected
by a firewall, that flaw has a very high exposure potential. If it is only possible to exploit the flaw if you are an
employee within the company with a valid login ID, using a computer inside the company building, the exposure
potential of that flaw is significantly less severe.

OVERALL SEVERITY METRIC AND INTERACTION BETWEEN THE THREE KEY METRICS

One or more of these risk factors can have a profound affect on the overall severity of a security hole.
Assume for a moment that you are the CIO for a business based on a web eCommerce site. Your security analyst
informs you that someone has found a flaw in the operating system your servers are running. A malicious hacker
could exploit this flaw to erase every disk on every server on which the company depends.

The damage potential of this flaw is catastrophic.
Worse, he adds that it is trivially easy from a technical perspective to exploit this flaw. The exploitation

potential is critical.
Time to press the panic button, right? Now suppose he then adds this vital bit of information. Someone

can only exploit this flaw with a key to the server room, because this particular security vulnerability requires
physical access to the machines. This one key metric, if you’ll pardon the pun, makes a dramatic difference in the
overall severity of the risk associated with this particular flaw. The extremely low exposure potential shifts the
needle on the severity meter from “panic” to “imminently manageable”.

Conversely, another security vulnerability might be exposed to every script kiddy on the Internet, but still
be considered of negligible severity because the damage potential for this flaw is inconsequential.

Perhaps you can begin to appreciate why it is misleading, if not outright irresponsible to measure security
based on a single metric like the number of security alerts. At the very least, one must also consider these three risk
factors. Would you rather rely on an operating system with a history of hundreds of flaws of negligible severity, or
one with a history of a dozens of flaws with catastrophic severity? Unless you factor the overall severity of the
flaws into the evaluation, the number of flaws is irrelevant at best, misleading at worst.

THE EXCEPTION TO THE RULE

The Overall Severity Metric has three aforementioned “main” ingredients. We’ve demonstrated how a low
damage potential or a low exposure potential can effectively negate the other high risk factors. The exploitation
potential is an exception to this rule. A flaw that requires expert programming skills to exploit does far less to offset
a high damage potential or a high exposure potential.

The reason for this is simple. If one must break into a computer room in order to exploit a flaw, that
problem is not only difficult to overcome, any attempt to break into the computer room increases the risk for the
intruder to get caught. That is also why a flaw that can only be exploited by an employee within the company who

must log in to a local computer with his valid login ID is less severe than a flaw that can be exploited by any script
kiddy on the Internet. The employee is far more likely to get caught.

On the other hand, anonymous malicious hackers with only mediocre programming skills can spend weeks
or months developing a program to exploit a security hole with little or no risk of getting caught. The only
significant challenge presented to such an intruder is how to activate the malicious program without having its origin
traced back to its creator.

One look at the current state of malicious software should make this exception self-evident. Not many
people blast their way into a computer room with a bazooka in order to crack into the servers. But there are
countless Trojans, worms, and viruses that are still infecting systems today, in part because programmers, talented or
not, were willing to tackle the technical challenge of writing malicious code or re-writing the malicious code of
others. Technical difficulty obviously does not necessarily offset an otherwise high-risk flaw.

APPLYING THE OVERALL SEVERITY METRIC

Once you can evaluate the overall severity of any given flaw, you can begin to add meaning to metrics such
as “how many security alerts does Windows have vs. Linux”, or “how long does one have to wait for a fix after a
flaw is discovered when using Windows vs. Linux”.

Suppose one operating system has far more security alerts than another. The only reason that metric may
have meaning is if it also has more security alerts that point to flaws with a high overall severity level. It is one
thing to be plagued on a regular basis by a myriad of minor low-risk annoyances, quite another to be plagued on a
regular basis by only a few flaws that put your entire company at risk.

Suppose one operating system has a better record for time to delivery of a fix once a flaw is discovered.
Once again, the only reason this metric may have meaning is if the delays are related to flaws with a high overall
severity level. It is one thing to wait months for a fix to an exploit that would cause little or no damage on a few
computers. It is quite another to wait months for a fix for a flaw that puts your entire company at risk.

Means Of Evaluating Metrics

EXPOSURE POTENTIAL

This metric takes into account the measures one must take to access a machine in order to exploit security
vulnerabilities. This typically falls into one of the following categories. The actual order of some of these categories
can vary in practice, but this should prove to be a useful guideline. It should also be noted that there are several
unusual complexities not listed here. For example, a patched flaw in Windows Server 2003 was not itself a serious
exposure, but it allowed a malicious hacker to open the system to serious exposure. In short, it was a single step in a
chain of exposure vulnerabilities. Given that these are roughly defined categories, they are listed in terms of
severity, ordered from least to greatest.

1. You need physical access to the machine, but not a valid user login account.
2. You need physical access to the machine and must have a valid user login account.
3. You need a valid user login account, but do not need physical access to the target machine. Local

network access (from inside the company network) is sufficient.
4. You need a valid user login account, but do not need physical access to the target machine. The target

machine is accessible via the Internet from a remote location.
5. You can exploit a flaw remotely from the Internet without a valid login account for the target machine,

but you cannot reach the flaw directly. Another barrier is in place, such as a router or firewall. This
category is difficult to place in the correct order of severity, since a well-configured firewall may
provide 100% protection, but not always. A poorly configured firewall may not present a barrier at all.

6. You can exploit a flaw remotely from the Internet without a valid login account for the target machine,
but you cannot reach the flaw directly. Another less intrusive barrier is in place. This barrier may be
another program (for example, the flaw is in Microsoft SQL Server, but must be exploited by
embedding an ActiveX control or Javascript within a web page accessed by Microsoft Internet
Information Server. In some cases, you must entice the user into an action in order to gain indirect
access. For example, you must send a user an email that directs them to a web page that includes the
malicious control or code. To use another common practice, the user is enticed to open an attachment
to an email. The severity of this category varies depending on how cleverly the enticement is
disguised as an innocent action.

7. You can exploit a flaw remotely from the Internet without a valid login account for the target machine,
but you cannot reach the flaw directly. Nevertheless, the flaw is exploited indirectly but automatically.
For example, a flaw in the Windows operating system is exploited immediately and automatically as
soon as a user opens an email message in Outlook.

8. You can exploit a flaw remotely from the Internet simply by sending information directly to the target
machine via the network. For example, one might be able to exploit a Denial Of Service (DoS)
vulnerability simply by sending special network packets to a target web site, rendering that web site
unavailable to other Internet users.

EXPLOITATION POTENTIAL

This metric takes into account the technical difficulty involved in exploiting a security flaw. This typically
falls into one of the following categories, in terms of severity, ordered from least to greatest (the actual order of
some of these categories can vary in practice, but this should prove to be a useful guideline):

1. The flaw exists but it has not yet been discovered. This flaw either requires infinite knowledge or a

lucky accident to exploit.
2. The flaw requires expert programming skills and profound knowledge of the operating system, but its

existence is not known well enough that many such attackers would be likely to exploit it.
3. The flaw is known by and requires attackers with expert programming skills and profound

understanding of how the target software and operating system works in order to exploit.
4. The flaw requires expert programming skills, but someone has already created a virus, Trojan, or worm

as a foundation. The programmer must only modify the code in order to exploit a new flaw, or modify
the code in order to make the virus more dangerous.

5. The flaw required expert programming skills to create, but the code is available and it requires only
mediocre programming skills to improve or modify the code in order to exploit the existing flaw, or
future flaws.

6. The flaw requires only mediocre or novice programming skills, or rudimentary computer knowledge to
exploit.

7. It is irrelevant how difficult it is to exploit the flaw, because someone has done the hard work of
solving the means of exploiting the flaw, and made a intrusion kit publicly available for use by
novices.

8. Anyone can exploit the flaw simply by typing simple text at a command line or pointing a browser to a
URL.

DAMAGE POTENTIAL

This metric is the most difficult to quantify. It requires at least two separate sets of categories. First, it
takes into account how much damage potential a flaw presents to an application or the computer system. Second, the
damage potential must be measured in terms of “what it means” to the company affected. For example, there is a
single metric where a flaw allows an attacker to read unpublished web pages. That flaw is relatively minor if no
sensitive information is present in the system. However, if an unpublished web page contains sensitive information
such as credit card numbers, the overall damage potential is quite high even though the technical damage potential is
minimal. Here are the most important factors in estimating technical damage potential for any given flaw, in order
of severity from least to worst:

1. The flaw affects only the performance of another computer, but not significantly enough to make the

computer stop responding.
2. The flaw only affects the attacker’s own programs or files, but not the files or programs of other users.
3. The flaw exposes the information in co-worker’s files, but not information from the administrator

account or information in any system files.
4. The flaw allows an attacker to examine, change or delete a user’s files. It does not allow the attacker to

examine, change or delete administrator or system files.
5. The flaw allows an attacker to view sensitive information, whether by examining network traffic or by

getting read-only access to administrator or system files.
6. The flaw allows an attacker to gain some but not all administrator-level privileges, perhaps within a

restricted environment.
7. The flaw allows an attacker to either crash the system or otherwise cause the system to stop responding

to normal requests. This is typically a Denial Of Service (DoS) attack. However, the attacker cannot
actually gain control of the computer aside from stopping it from responding.

8. The flaw allows an attacker to change or delete all privileged files and information. The attacker can
gain complete control of the target system and do virtually any amount of damage that a fully
authorized system administrator can do.

OVERALL SEVERITY RISK

Given the above three factors, the overall severity risks range from minimal to catastrophic. It would be
impossible to consider all the permutations, but a few examples may prove useful. These examples are based on the
damage potential categories, combined with assorted selections from exposure and exploitation potential.

1. If an anonymous hacker on the Internet can degrade your company’s system performance, this can

range from a minor annoyance to a devastating financial impact, depending on how critical system
performance may be to the mission of your company.

2. Attacking your own account is silly, but self-destructive behavior can cause needless restoration work
by the IT department.

3. The potential severity of viewing another user’s files is minimal if you can only view the files of a co-
worker in the same building, even if this flaw is trivially easy to exploit. The severity is increased if
the co-worker’s files contain sensitive information, and decreased the more likely the attacker may be
to get caught. On the other hand, if any anonymous malicious hacker on the Internet (high exposure

potential) can view sensitive files of a user within your company, the overall severity is dramatically
more serious.

4. Again, if the flaw allows an attacker to change or delete the files of a co-worker in the same building,
the severity is minimized by how well the company performs backups, and how easily the attacker will
get caught. If the attacker can change files on a remote computer’s user account, the severity varies
with the importance of that user account and the service it provides. For example, the severity may
range from the embarrassment of having your web pages defaced to having your web pages deleted
entirely.

Additional Considerations

APPLICATION IMBALANCE

One factor that is often overlooked in the grand debate about the superiority of one operating system over
another hinges on the fact that security vulnerabilities almost always revolve around applications. This presents a
problem when comparing Windows to Linux, because the two are not at all equal with respect to application
portability and availability.

On the one hand, most of the popular Microsoft Windows applications are Microsoft applications, and they
only run on Windows. When a flaw is found in Microsoft Exchange, one can be reasonably certain that this problem
only affects Windows customers. Microsoft Exchange does not run on Linux, Solaris, or anything else but
Windows.

The Apache web server, on the other hand, may be most often associated with Linux, UNIX or other
UNIX-like systems, but Apache does run on Windows, as well. So when one compares the overall security of
Windows vs. Linux, is a flaw in Apache a blemish on Linux only? Or does it reflect negatively on both Linux and
Windows?

To complicate matters, there are several cases where a flaw in Apache poses little or no danger on Linux,
but is a serious vulnerability on Windows. The reverse is rarely, if ever, the case. Should the overall security
ranking of Windows suffer because it is more adversely affected than Linux when using software that is most
commonly associated with Linux?

One is obligated to question if any of these factors have been considered when comparing the security of
Windows to Linux.

 SETUP AND ADMINISTRATION

Finally, the difference between the Linux philosophy to server setup and administration vs. the Windows
philosophy to setup and administration is, as stated earlier, perhaps the most critical differentiating factor between
the two operating systems.

Windows encourages you to use the familiar interface, which means administering Windows Server 2003
at the server itself. Linux does not rely on or encourage local use of a graphical interface, in part because it is an
unnecessary waste of resources to run a graphical desktop at the server, and in part because it increases security risks
at the server. For example, any server that encourages you to use the graphical interface at the server machine also
invites you to perform similar operations, such as use the browser at the server. This exposes that server to any
browser security holes. Any server that encourages you to administer it remotely removes this risk. If you
administer a Linux server remotely from a desktop user account, a browser flaw exposes only the remote desktop
user account to security holes, not the server. This is why a browser security hole in Windows Server 2003 is
potentially more serious than a browser security hole in Red Hat Enterprise Server AS.

A Comparison of 40 Recent Security Patches

The following sections document the 40 most recent patches to security vulnerabilities in Windows Server
2003 (arguably the most secure version of Windows) and Linux Red Hat Enterprise AS v.3 (arguably the
competitive equivalent of Windows Server 2003). The data for the Windows Server 2003 patches and

vulnerabilities was taken directly from the Microsoft web site, and the data for Red Hat Enterprise AS v.3 was taken
from the Red Hat web site.

Windows Server 2003 has experienced the most severe security holes. Microsoft’s own classification of
the flaws shows that 38% of the patched programs are rated as Critical. If we apply the metrics outlined in the
previous sections, we would have to raise that to between 40-50%. Many of the flaws that are assigned the Critical
rank in Windows XP or other versions are downplayed for Windows Server 2003 simply because the default settings
for Internet Explorer and Outlook are now severely restrictive – so restrictive that these programs are practically
unusable without reversing at least some of these defaults.

In sharp contrast, of the 40 vulnerabilities listed by Red Hat, only 4 are rated as Critical by our metrics
(Red Hat does not list a severity rank for its alerts). That means 10% of the most recent 40 updates are of Critical
severity. This score is actually generous to Microsoft, since two of the flaws could easily be argued to rank lower
than Critical, thus also lowering the percentage of Critical flaws to 5%.

Patches and Vulnerabilities Affecting Microsoft Windows Server 2003

The following table contains information about the vulnerabilities from the 40 most recent security patches
made available by Microsoft. 6

Microsoft marks fifteen of the 40 vulnerabilities as Critical. That means by Microsoft’s own subjective
analysis, 38% of the most recent problems reported and patched are of Critical severity, the highest rating possible.

There are two serious problems with the way Microsoft has rated the severity of its flaws, however:

1. Microsoft often ranks a security flaw as Critical for all Windows operating systems except Windows

Server 2003, in which case it is ranked at the lower value, Important. The reason given for this difference is that
Windows Server 2003 has different default settings than other versions of Windows. Here is Microsoft’s own
description of the different settings:7

• Security level for the Internet zone is set to High. This setting disables scripts, ActiveX controls,

Microsoft Java Virtual Machine (MSJVM), HTML content, and file downloads.
• Automatic detection of intranet sites is disabled. This setting assigns all intranet Web sites and all

Universal Naming Convention (UNC) paths that are not explicitly listed in the Local intranet zone
to the Internet zone.

• Install On Demand and non-Microsoft browser extensions are disabled. This setting prevents Web
pages from automatically installing components and prevents non-Microsoft extensions from
running.

• Multimedia content is disabled. This setting prevents music, animations, and video clips from
running.

While some of these default settings (such as disabling multimedia content) are perfectly logical for a

server, it is nearly inconceivable that anyone who uses Windows Server 2003 will leave the settings described in the
first item unchanged. These settings make the Internet Explorer browser nearly useless to the server administrator
who wants to perform any browser-based administrative tasks, download updates, etc. To lower the severity rank
based on the assumption that Windows Server 2003 users will leave these default settings as they are is a fantasy, at
best. If Windows Server 2003 users were encouraged to administer the server remotely, that might mitigate this risk.
But Microsoft clearly promotes the local familiar Windows desktop as the prime advantage to Windows Server
2003.

2. There are flaws in the list below that, when exploited, are limited in severity according to the privileges

of the user. We have faithfully recorded these cases by specifying “User” in the category “Privileges”. However,
since Windows Server 2003 is, indeed, a server, it stands to reason that most people who directly interact with any
machine running Windows Server 2003 will be administrators. Even assuming everyone follows best practices at the
desktop; Windows Server 2003 administrators are obviously going to log in with administrator privileges. So in the

6 See Resources for URL for page from which data was extracted
7 See Resources for URL for page from which text is quoted

cases where the severity of flaws are “limited” by user privileges, most of the time the severity will actually be
unlimited, because the user will have administrator privileges. Accordingly, to cite one example, the flaw described
in Microsoft Security Bulletin MS04-015 deserves a rating of Critical rather than Important. Ironically, similar flaws
in Linux deserve a lower rating because Linux does not encourage administrators to work at the server with a
graphical desktop.

All things considered, we would rank, at minimum, five more of the vulnerabilities to be Critical. That

means 50% of the listed flaws would be rated as Critical according to this report’s own severity metrics as described
in the previous sections. We listed in parenthesis those vulnerabilities that should be rated as Critical, given that the
average administrator is likely to change the default settings that Microsoft uses to lower the severity. We did not,
however, count these as Critical in our overall comparison. The parenthetical comments are there to illustrate that
Microsoft is deliberately underestimating the severe nature of these flaws due to an unreasonable condition – that the
default settings of Windows Server 2003 make the difference.

Date Windows
Server
2003

Description Method Pathway Access Privileges Damage User
Interaction

Microsoft
Severity
Rating

September
14, 2004

Microsoft
Security
Bulletin
MS04-028

Buffer Overrun
in JPEG
Processing
(GDI+) Could
allow code
execution

Specially
crafted JPEG
image

Dozens of
applications

Remote
Internet Admininstrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required Critical

July 30,
2004

Microsoft
Security
Bulletin
MS04-025

Navigation
Method Cross-
Domain
Vulnerability

Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required

Moderate
(should
be
Critical)

July 30,
2004

Microsoft
Security
Bulletin
MS04-025

Malformed BMP
File Vulnerability

Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required None

July 30,
2004

Microsoft
Security
Bulletin
MS04-025

Malformed GIF
File Vulnerability

Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required Critical

July 13,
2004

Microsoft
Security
Bulletin
MS04-024

Vulnerability in
Windows Shell
Could Allow
Remote Code
Execution

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required

Important
(Should
be
Critical)

July 13,
2004

Microsoft
Security
Bulletin
MS04-023

Vulnerability in
HTML
showHelp Could
Allow Code
Execution

HTML Email,
Visit Malicious
Web Site

IE, Help and
Support
Center

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required Critical

July 13,
2004

Microsoft
Security
Bulletin
MS04-023

Vulnerability in
HTML Help
Could Allow
Code Execution

HTML Email,
Visit Malicious
Web Site

IE, Help and
Support
Center

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required Critical

July 13,
2004

Microsoft
Security
Bulletin
MS04-018

Cumulative
Security Update
for Outlook
Express

Specially
Crafted E-
mail Header

Outlook
Express 6

Remote
Internet User

Denial of
Service
(Causes
Outlook No Moderate

Express to
fail)

June 8,
2004

Microsoft
Security
Bulletin
MS04-017

Vulnerability in
Crystal Reports
Web Viewer
Could Allow
Information
Disclosure and
Denial of
Service

Specially
Crafted HTTP
Request

Visual Studio
.Net, IIS

Remote
Internet Service

Delete files,
Access
Privileged
Information,
Denial of
Service
(DoS) No Moderate

June 8,
2004

Microsoft
Security
Bulletin
MS04-016

Vulnerability in
DirectPlay
Could Allow
Denial of
Service

Send a
malformed
packet to
server IDirectPlay4

Remote
Internet Service

Denial of
Service
(DoS) of
Multiplayer
Game
Server No Moderate

May 11,
2004

Microsoft
Security
Bulletin
MS04-015

Vulnerability in
Help and
Support Center
Could Allow
Remote Code
Execution

HTML Email,
Visit Malicious
Web Site

IE, Help and
Support
Center

Remote
Internet User

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required

Important
(should
be
Critical)

April 13,
2004

Microsoft
Security
Bulletin
MS04-014

Vulnerability in
the Microsoft Jet
Database
Engine Could
Allow Code
Execution

Send
specially
crafted query
to Jet (SQL)
engine

Jet Engine
(SQL Server),
IIS

Remote
Internet Service

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Important

April 13,
2004

Microsoft
Security
Bulletin
MS04-013

Cumulative
Security Update
for Outlook
Express

HTML Email,
Visit Malicious
Web Site

MHTML
Handling of
Outlook
Express

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) Yes Critical

April 13,
2004

Microsoft
Security
Bulletin
MS04-012

RPC Runtime
Library
Vulnerability

Send an RPC
message RPC

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Critical

April 13,
2004

Microsoft
Security
Bulletin
MS04-012

RPCSS Service
Vulnerability

Send a
specially
crafted
message RPCSS

Remote
Internet Service

DoS
(RPCSS
Service
stops
responding) No Important

April 13,
2004

Microsoft
Security
Bulletin
MS04-012

RPC over HTTP
Vulnerability

Send a
specially
crafted
message

IIS/COM
Internet
Services

Remote
Internet User, Service

DoS (Server
stops
responding) No Low

April 13,
2004

Microsoft
Security
Bulletin
MS04-012

Object Identity
Vulnerability

Send a
specially
crafted
message,
needs valid
login ID IIS/COM

Remote
Internet

Service,
Administrator

DoS (Need
to restart
IIS) No Low

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

LSASS
Vulnerability

Send a
specially
crafted
message LSASS

Local
Administrator
Only N/A

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required Low

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

PCT
Vulnerability

Send a
specially
crafted TCP
message

PCT/SSL,
SSL-enabled
apps (IIS)

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Low

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

Vulnerability in
HTML Help
Could Allow
Code Execution

HTML Email,
Visit Malicious
Web Site HTML Help

Remote
Internet User

Complete
control,
Unlimited Required Critical

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

H.323/ICF
Vulnerability

Send a
specially
crafted
message NetMeeting

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Important

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

Negotiate SSP
Vulnerability

Send a
specially
crafted
message IIS

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Critical

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

SSL
Vulnerability

Send a
malformed
message IIS/SSL

Remote
Internet N/A

DoS,
Reboots
System No Important

April 13,
2004

Microsoft
Security
Bulletin
MS04-011

ASN.1 "Double
Free"
Vulnerability

Specially
Crafted
Authentication
Request

ASN.1, used
by many
applications

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Critical

February
10, 2004

Microsoft
Security
Bulletin
MS04-007

ASN.1
Vulnerability
Could Allow
Code Execution

Specially
Crafted
Authentication
Request

ASN.1, used
by many
applications

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Critical

February
10, 2004

Microsoft
Security
Bulletin
MS04-006

Vulnerability in
the Windows
Internet Naming
Service (WINS)
Could Allow
Code Execution

Specially
Crafted
Message,
Buffer overrun WINS

Remote
Internet Administrator

Denial of
Service
(Causes
WINS to
stop
responding),
potential
complete
control No Important

February
2, 2004

Microsoft
Security
Bulletin
MS04-004

Cross-Domain
Vulnerability

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited Required Moderate

February
2, 2004

Microsoft
Security
Bulletin
MS04-004

Drag-and-Drop
Operation
Vulnerability

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Download
programs
without
notification Required Moderate

February
2, 2004

Microsoft
Security
Bulletin
MS04-004

Improper URL
Canonicalization

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Spoof web
site Required Important

January
13, 2004

Microsoft
Security
Bulletin
MS04-003

Buffer Overrun
in MDAC
Function Could
Allow Code
Execution

Spoof a local
SQL Server MDAC

Remote
Internet Service

Complete
control,
Unlimited,
DoS
(Service
stops
responding) No Important

January
13, 2004

Microsoft
Security
Bulletin
MS04-001

Vulnerability in
Microsoft
Internet Security
and
Acceleration
Server 2000
H.323 Filter
Could Allow
Remote Code
Execution

Send
Specially
Crafted
Message,
Buffer overrun

Microsoft
Firewall
Service,
Microsoft
Internet
Security and
Acceleration
Server

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Critical

November
11, 2003

Microsoft
Security
Bulletin
MS03-048

Cross-Domain
Vulnerability

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited Required

Moderate
(should
be
Critical)

November
11, 2003

Microsoft
Security
Bulletin
MS03-048

XML Object
Vulnerability

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Attacker can
read known
files on
system Required Low

November
11, 2003

Microsoft
Security
Bulletin
MS03-048

Drag-and-Drop
Operation
Vulnerability

HTML Email,
Visit Malicious
Web Site IE

Remote
Internet User

Complete
control,
Unlimited Required

Moderate
(should
be
Critical)

October
15, 2003

Microsoft
Security
Bulletin
MS03-045

Buffer Overrun
in the ListBox
and in the
ComboBox
Control Could
Allow Code
Execution

Exploit flaw in
graphical
control Windows API

Local user
with valid
login ID User

Complete
control,
Unlimited No Low

October
15, 2003

Microsoft
Security
Bulletin
MS03-044

Buffer Overrun
in Windows
Help and
Support Center
Could Lead to
System
Compromise

HTML Email,
Visit Malicious
Web Site

IE, Help and
Support
Center, HCP
Protocol

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) Required Critical

October
15, 2003

Microsoft
Security
Bulletin
MS03-043

Buffer Overrun
in Messenger
Service Could
Allow Code
Execution

Specially
Crafted
Message

Messenger
Service,
Disabled by
default

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS (Server
stops
responding) No Critical

October
15, 2003

Microsoft
Security
Bulletin
MS03-041

Vulnerability in
Authenticode
Verification
Could Allow
Remote Code
Execution

Malicious
ActiveX
control used
without
permission
under low-
memory
conditions

ActiveX
Authentication

Remote
Internet User

Complete
control,
Unlimited Required Critical

September
10, 2003

Microsoft
Security
Bulletin
MS03-039

Buffer Overrun
In RPCSS
Service Could
Allow Code
Execution

Specially
Crafted
Message RPCSS

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS No Critical

Patches and Vulnerabilities Affecting Red Hat Enterprise Linux AS v.3

The following table contains information about the vulnerabilities from the 45 most recent security patches
made available by Microsoft. 8

Red Hat does not assign a severity rating. We used the metrics defined in this report to evaluate the severity
of each item, along with the consideration that Linux servers are routinely administered from desktop systems, not
from a graphical interface at the server itself. Many of the severity ratings are notated with brief explanations which
may help the reader understand the rating.

Of the 40 vulnerabilities, only 4 are rated as Critical. That means 10% of the most recent 40 updates are of
Critical severity.

It is arguable that two of these four items do not deserve to be rated as highly as they are, considering the
software in question. These two items involve a program called Ethereal. Ethereal is one of several available
network “sniffer” monitoring tools. One generally runs Ethereal on an as-needed basis, not as a regular service, so
the chance that it will be running when someone attempts to attack its vulnerability is extremely low. If we chose to
reduce the severity to Important for this reason, only 5% of the 40 most recent alerts would be considered Critical.

The IPSEC and Kerberos vulnerabilities are more deserving of the Critical status, because they are services
that one would run continually.

Only a few of the vulnerabilities allow a malicious hacker to perform mischief at the administrator level.
There are mitigating factors in most of these cases, however. For example, the Samba vulnerability (July 22, 2004,
RHSA-2004:259-23) can only be exploited if someone configures inetd (via a file called hosts.allow) to allow a known
user and host to access this service. Unless the system is poorly configured, no one except an authorized known
user could reach the Samba configuration program in order to exploit the vulnerability. Otherwise, this would
deserve a Critical severity rating. Other flaws that allow administrator access also require the flaw to be exploited
by a known user with a valid ID. This reduces the risk and severity because of the significantly increased chances
the malicious hacker will be caught.

Date Red Hat
Advanced

Server

Description Method Pathway Access Privileges Damage User
Interaction

Severity Rating

September
7, 2004

RHSA-
2004:400-
15

Updated
gaim
package
fixes security
issues

Send crafted
data to a
GAIM client

GAIM (Instant
Messenger)

Remote
Internet User

Complete
control,
Unlimited No

Important (Gaim
not typically used
on server)

September
1, 2004

RHSA-
2004:323-
09

An updated
lha package
fixes security
vulnerability

Convince user
to use a
specially
crafted
command

Carefully
crafted LHA
archive,
convince
users to use
a command

Download or
otherwise
receive lha-
compressed
file User

Complete
control,
Unlimited Yes

Low (lha is a
rarely used
outdated
compression
format)

September
1, 2004

RHSA-
2004:349-
10

Updated http
packages fix
mod_ssl
security flaw

Abort an SSL
request in a
certain state

Apache
2.0.50 and
earlier

Remote
Internet Service

Consume
CPU
resources
(potential
DoS) No Important

September
1, 2004

RHSA-
2004:436-
07

Updated
rsync
package
fixes security
issue

Send crafted
rsync
command

rsync 2.6.2
and earlier

Remote
Internet Service

Read/write
files not
defined as
accessible
by rsync No

Important (rsync
not a common
publicly
accessible
service, and
chroot negates
this vulnerability)

August 31,
2004

RHSA-
2004:350-
12

Updated krb5
packages fix
security
issues

Send crafted
authentication
request

Kerberos
authentication

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS
(Server
stops No Critical

8 See Resources for URL for page from which data was extracted

responding)

August 26,
2004

RHSA-
2004:432-
08

Updated
acrobat
package
fixes security
issues

Crafted
uuencoded
file

Acrobat
Reader

Remote
Internet User

Complete
control,
Unlimited Yes

Important
(Acrobat not
typically used on
server)

August 20,
2004

RHSA-
2004:414-
19

Updated qt
packages fix
security
issues

Crafted image
file

Qt (toolkit
used by KDE)

Remote
Internet User

Crash Qt,
possibly
execute
code Yes Important

August 5,
2004

RHSA-
2004:378-
08

Updated
Ethereal
packages fix
security
issues

Send
malicious
packets

Ethereal
network
monitor

Remote
Internet Administrator

Crash
Ethereal,
possibly
execute
code No Critical

August 4,
2004

RHSA-
2004:373-
13

GNOME VFS
updates
address extfs
vulnerability

Convince a
user to open a
special URI GNOME-VFS N/A User

Perform
actions as
the target
user Yes Low

August 4,
2004

RHSA-
2004:402-
08

Updated
libpng
packages fix
security
issues

Create
carefully
crafted png
file, entice
user to web
site libpng

Remote
Internet User

Complete
control,
Unlimited Yes

Important
(Browser not
typically used on
server)

August 4,
2004

RHSA-
2004:421-
17

Updated
mozilla
packages fix
security
issues

Several
openings,
including
malicious
javascript

Mozilla
browser

Remote
Internet User

Complete
control,
Unlimited Yes

Important
(Browser not
typically used on
server)

August 3,
2004

RHSA-
2004:413-
07

Updated
kernel
packages fix
security
vulnerabilities

Access large
amounts of
memory Kernel

Local user
with valid ID N/A

DoS
(Server
stops
responding) Yes Low

July 29,
2004

RHSA-
2004:308-
06

Updated
ipsec-tools
package

Verify X.509
certificate ipsec-tools

Remote
Internet N/A

Does not
abort key
exchange if
verification
fails No Important

July 29,
2004

RHSA-
2004:409-
05

Updated sox
packages fix
buffer
overflows

Specially
crafted WAV
file

sox (Sound
eXchange)

Remote
Internet User

Complete
control,
Unlimited,
DoS
(Server
stops
responding) Yes Important

July 22,
2004

RHSA-
2004:259-
23

Updated
samba
packages fix
vulnerabilities

Specially
crafted HTTP
authentication

Samba
(Windows
services) Administrator Administrator

Complete
control,
Unlimited,
DoS
(Server
stops
responding) Yes

Low (user is pre-
authenticated by
inetd/hosts.allow)

July 19,
2004

RHSA-
2004:392-
13

Updated php
packages fix
security
issues

Obscure hash
attack PHP

Remote
Internet Service

Execute
code as
Apache
user No

Low (extremely
difficult to exploit,
depends on site
construction)

July 6,
2004

RHSA-
2004:342-
10

Updated
httpd
packages fix
security
issues

Fake SSL
certificate
authority that
SSL is
configured to
trust, or
consume
memory

Apache with
SSL

Remote
Internet Service

Execute
code as
Apache
user,
possible
DoS No

Moderate (due to
possible DoS
attack)

July 2,
2004

RHSA-
2004:360-
05

Updated
kernel
packages fix
security
vulnerabilities

Mount NFS
file system
from a
vulnerable
machine Kernel

Local user
with valid
login ID,
NFS must be
running Group

Possibly
change a
file to be
owned by a
different
group No Low

June 18,
2004

RHSA-
2004:249-
07

Updated
libpng
packages fix
security issue

Create
carefully
crafted png
file, entice
user to web
site libpng

Remote
Internet User

Complete
control,
Unlimited,
DoS
(Server
stops
responding) Yes Important

June 17,
2004

RHSA-
2004:255-
10

Updated
kernel
packages fix
security
vulnerabilities

Run functions
such as fsave
and frstor Kernel

Local user
running
programs
designed to
make the
kernel fail N/A

Denial of
Service
(Server
stops
responding) Yes

Low (attacker
must run
programs on the
server)

June 14,
2004

RHSA-
2004:240-
06

Updated
SquirrelMail
package
fixes multiple
vulnerabilities

Mail user can
run crafted
URL

PHP,
Squirrelmail

Remote
Internet user
with valid
login ID Service

Modify
contents of
database,
run as
other web
mail users No

Important
(requires user
with valid
account)

June 9,
2004

RHSA-
2004:233-
07

Updated cvs
package
fixes security
issues

Send crafted
instructions to
CVS CVS

Remote
Internet user
with valid
login ID Service

Execute
code with
CVS user
privileges No

Important
(requires user
with valid
account)

June 9,
2004

RHSA-
2004:234-
06

Updated
Ethereal
packages fix
security
issues

Send
malicious
packets

Ethereal
network
monitor

Remote
Internet Administrator

Complete
control,
Unlimited,
DoS
(Server
stops
responding) No Critical

June 9,
2004

RHSA-
2004:236-
14

Updated krb5
packages
available

Use
malformed
authentication
names

Kerberos
authentication

Remote
Internet AdministratorUnknown No

Low (Kerberos
on Red Hat is not
configured by
default to have
this vulnerability)

June 9,
2004

RHSA-
2004:242-
06

Updated
squid
package
fixes security
vulnerability

Send overly
long password

Squid proxy
and cache

Local user
with valid ID Service

Execute
code with
Squid user
privileges No

Low (Requires
valid user; Squid
is not configured
with this
vulnerability by
default)

May 26,
2004

RHSA-
2004:174-
09

Updated
utempter
package
fixes
vulnerability

If utempter is
active, write
application
that exposes
this flaw utempter

Local or
remote user
with valid ID Administrator

Overwrite
privileged
files with
symlink No

Low (Requires
valid user;
utempter is
obscure, exploit
is difficult)

May 26,
2004

RHSA-
2004:219-
07

Updated
tcpdump
packages fix
various
vulnerabilities

Specially
crafted
ISAKMP
packets tcpdump

Remote
Internet N/A

Causes
tcpdump to
crash No

Low (tcpdump is
simply a utility
administrators
use to examine
tcp traffic)

May 21,
2004

RHSA-
2004:064-
11

Updated
samba
packages fix
security
vulnerability

Accidental
change to
samba
account

Samba
(Windows
services) N/A N/A

May
change a
user's
password
to
something
more easily
guessed Yes

Low (extremely
unlikely accident,
unlikely
consequences)

May 21,
2004

RHSA-
2004:120-
12

Updated
OpenSSL
packages fix
vulnerabilities

Send crafted
SSL packets OpenSSL

Remote
Internet N/A

May cause
OpenSSL
to crash,
Denial of
Service
(OpenSSL
stops
responding) No

Important (due to
possible DoS
attack)

May 19,
2004

RHSA-
2004:180-
10

Updated
libpng
packages fix
crash

Craft a special
png image,
entice to web
site libpng

Remote
Internet N/A

Causes
application
displaying
image to
crash Yes

Low (restart
application after
it crashes)

May 19,
2004

RHSA-
2004:190-
14

Updated cvs
package
fixes security
issue

Craft a special
CVS
command CVS

Local or
remote user
with valid ID Service

Execute
code with
CVS user
privileges No

Important
(requires user
with valid
account)

May 19,
2004

RHSA-
2004:192-
06

Updated
rsync
package
fixes security
issue

Send crafted
rsync
command rsync

Remote
Internet Service

Read/write
files not
defined as
accessible
by rsync No

Important (rsync
not a common
publicly
accessible
service, and
chroot negates
this vulnerability)

May 17,
2004

RHSA-
2004:222-
11

Updated
kdelibs
packages
resolve URI
security
issues

Crafted URI,
entice user to
web site KDE

Remote
Internet User

Complete
control,
Unlimited Yes Important

May 11,
2004

RHSA-
2004:165-
09

Updated
ipsec-tools
package
fixes
vulnerabilities
in ISAKMP
daemon

attacker crafts
an ISAKMP
header with a
extremely
large value ipsec-tools

Remote
Internet N/A

Denial of
Service
(Server
stops
responding) No Critical

May 11,
2004

RHSA-
2004:188-
14

Updated
kernel
packages
available for
Red Hat
Enterprise
Linux 3
Update 2

Bug-fix
release. Most
serious bug is
possible
privilege
escalation
when
mounting
Netware
volumes Kernel

Local or
remote user
with valid ID N/A N/A No

Low (obscure
bug fixes)

April 22,
2004

RHSA-
2004:183-
03

Updated
kernel
packages fix
security
vulnerabilities

Write program
to gain root
(administrator)
privileges Kernel

Local user
with valid ID Administrator

Complete
control,
Unlimited No

Important
(requires user
with valid
account)

April 17,
2004

RHSA-
2004:153-
09

Updated
CVS
packages fix
security issue

Fake paths to
overwrite files CVS

Local or
remote user
with valid ID Service

Overwrite
files outside
CVS
directories No

Important
(requires user
with valid
account)

April 14,
2004

RHSA-
2004:133-
12

Updated
squid
package
fixes security
vulnerability

Craft URLs to
view restricted
web sites

Squid proxy
and cache

Local or
remote user
with valid ID N/A

View web
pages
Squid is
configured
to block No

Moderate
(Basically a way
to trick Squid into
allowing access
to restricted
sites, such as
porn sites, but
may also be
used to access
blocked Intranet
pages)

April 14,
2004

RHSA-
2004:160-
05

Updated
OpenOffice
packages fix
security
vulnerability
in neon

Craft format
strings, entice
user to visit
site OpenOffice

Remote
Internet User

Execute
code Yes

Moderate
(OpenOffice not
typically used on
server)

CERT Vulnerability Notes Database Results
The United States Computer Emergency Readiness Team (CERT) uses its own set of metrics to evaluate

the severity of any given security flaw. A number between 0 and 180 expresses the final metric, where the number
180 represents the most serious vulnerability. The ranking is not linear. In other words, a vulnerability ranked 100
is not twice as serious as a vulnerability ranked at 50.

CERT considers any vulnerability with a score of 40 or higher to be serious enough to be a candidate for a
special CERT Advisory and US-CERT technical alert.

We queried the CERT database using the search terms “Microsoft”, “Red Hat”, and “Linux”.9 While the

CERT web search capabilities do not produce perfectly desirable results in terms of granularity or longevity. This is
especially true for the search results for “Red Hat” and “Linux”. The “Linux” search results include a number of
Oracle security vulnerabilities that are common to Linux, UNIX, and Windows. The details of the most severe “Red
Hat” entry does not even list Red Hat as a vulnerable system. The results for the “Microsoft” search seem to be
almost entirely accurate, inasmuch as both the details and entries refer to flaws in Microsoft-specific software. As a
result, the results are somewhat unfairly skewed against Linux and Red Hat. Nevertheless, even if one takes the
results at face value and ignores the skewed results for Linux and Red Hat, Microsoft still produces the most entries
in the CERT database, and the list of entries contain the most severe flaws.

The CERT results for “Microsoft” returned 250 entries, with the top two entries containing the severity

metric of 94.5. Thirty-nine entries have a severity rating of 40 or greater. The average severity rating for the top 40
entries is 54.67. (We chose to average 40 entries instead of 50 or more because the Red Hat search only returned 49
results.)

The CERT results for “Red Hat” returned 46 entries. The top entry has a severity metric of 108.16. Only 3
(vs. 39 for Microsoft) entries have a metric of 40 or greater. The average severity for the top 40 entries is 17.96.

The CERT results for the “Linux” search returned 100 entries. The top entry has a severity metric of 87.72.
Only 6 of the entries carry a severity metric of 40 or greater. The average severity for the top 40 entries is 28.48.

These results cannot be expected to mirror our own analysis of recent vulnerability patches. The CERT

search criteria and date ordering is different, and the CERT search does not confine the products to Windows Server
2003 and Red Hat Enterprise Linux AS v.3. But the CERT results reflect how Windows security flaws tend to be
far more frequently severe than those of Linux, which echoes our conclusions.

9 See the References section below for the full URLs we used to perform these searches.

References
Netcraft Web Survey for September 2004
http://news.netcraft.com/archives/2004/08/31/September_2004_seb_server_survey.html

Netcraft Top 50 Servers With Longest Uptime (results may differ since the information changes daily)
http://uptime.netcraft.com/up/today/top.avg.html

Unpatched PC “Survival Time” Just 16 Minutes, Gregg Keizer, TechWeb News
http://www.internetweek.com/breakingNews/showArticle.jhtml?articleID=29106061

Top 10 Benefits of Windows Server 2003
http://www.microsoft.com/windowsserver2003/evaluation/whyupgrade/top10best.mspx

Microsoft Security Bulletin, Current Downloads
http://www.microsoft.com/technet/security/CurrentDL.aspx

Default Settings Different on Windows Server 2003
These settings are enumerated on several alert pages under “Frequently Asked Questions, What is Internet Explorer
Enhanced Security Configuration?” The following is one such URL.
http://www.microsoft.com/technet/security/bulletin/ms03-032.mspx

Red Hat Enterprise Linux Advance Server v.3 Security Advisories
https://rhn.redhat.com/errata/rhel3as-errata-security.html

CERT search for Microsoft Alerts
http://www.kb.cert.org/vuls/bymetric?searchview&query=microsoft&searchorder=4&count=100

CERT search for Red Hat Alerts
http://www.kb.cert.org/vuls/bymetric?searchview&query=red*hat&searchorder=4&count=100

CERT search for Linux Alerts
http://www.kb.cert.org/vuls/bymetric?searchview&query=linux&searchorder=4&count=100

