Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

Much further progress needs to be made in this new field (of GP). For example,
consider the possibility of using GP techniques to "grow" electronic neuro circuits in
special machines called "Darwin Machines”, an idea discussed above in the section on
future research possibilities. A Darwin Machine is merely an example of the kind of thing
being proposed here which would both self-assemble and self-test.

11.6 Ongoing Work
This section contains two subsections,

a) Evolvable Hardware & Darwin Machines
b) Evolving Artificial Nervous Systems

Both subsections can be classified as ongoing work. They contain ideas only, due
to the fact that neither of them has as yet been implemented and tested. They therefore
deserve to be placed in this chapter on future work.

11.6.1 Evolvable Hardware & Darwin Machines

As stated several times throughout this book, the author dreams of the possibility
of building machines which are capable of evolution, called "Darwin Machines” (see the
Postscript). As a result of several brain storming sessions with some American
colleagues (Dr. Kenneth Hintz and Dr. Richard Auletta) from the Electrical Engincering
Department of George Mason University in Virginia, the author now realizes that
hardware devices are on the market today, which use "software configurable hardware"
principles, that the author believes could be adapted and then applied to building Darwin
Machines. This could probably all be done within a few years.

This subsection suggests there are at least two approaches to be taken. The first
approach uses "software configurable hardware" chips, e.g. FPGAs (Field
Programmable Gate Arrays), HDPLDs (High Density Programmable Logic Devices), or
possibly a future generation of chips based on the ideas that FPGAs etc embody.

The second approach uses a special hardware device called a "hardware
accelerator” which accelerates the simulation in software of digital hardware devices
containing up to several hundred thousand gates. Darwin Machines will be essential if
artificial nervous systems are to be evolved for biots (i.e. biological robots) which consist
of thousands of evolved neural network modules (called GenNets). The evolution time of
1000-GenNet biots will need to be reduced by several orders of magnitude if they are to
be built at all. It is for this reason that Darwin Machines may prove to be a breakthrough
in biotic design. When molecular scale technologies come on line in the late 1990s, the
Darwin Machine approach will probably be the only way to build self assembling, self
testing molecular scale devices.

Software Configurable Hardware

The basic idea behind a Darwin Machine, is to use a type of hardware device
which accepts some bit string software instruction and uses it to configure (i.. to "wire
up") a hardware circuit and not just once, but repeatedly. The outputs of this newly
configured hardware circuit are then tested with another piece of software configurable
hardware to determine the quality of its performance, i.e. its fitness. Those bit string
instructions which configure high fitness circuits, survive (a la GA), to reproduce in the
next generation. Thus every time a new bit string instruction is input, a new circuit is

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

1

generated or configured. Modern "software configurable hardware" technologies
[Broesch 1991] (e.g. using EEPROM (electrically erasable PROMs) or SRAM (static
RAMS)) allow this possibility, so the idea of "evolvable hardware" can become a reality.
It is a most exciting prospect, and may have a major impact not only upon biotics, the
immediate concern of the author, but on the whole of electronics. As electronic and
computer circuits reach complexity levels which are beyond human capacities to
comprehend, the Darwin Machine may end up being the only effective circuit design tool.

FIG. 11.6.1.1 shows one possible Darwin Machine architecture. It is more
centrally controlled than the alternative, more distributed architecturc shown in FIG,
11,6.1.2 The architecture of FIG. 11.6.1.1 contains a single master circuit and a -
population of slave circuits which function in parallel. The master circuit sends each slave
a "GA chromosome” (i.e. a bit string instruction which is used to configure a hardware
circuit), the population fitness definition (i.c. a second bit string instruction which is used
to configure the hardware circuit which measures the fitness of the outputs from the first
circuit), and initial input values. Each slave takes its chromosome, configures a circuit
according o the instructions contained on the chromosome, measures the circuit's fitness
according to the fitness definition, and reports this value back to the master, which then
calculates the next generation of chromosomes in a GA like way, to complete the cycle.

SLAVE SLAVE SLAVE SLAVE

SLAVE SLAVE SLAVE SLAVE

SLAVE MASTER SLAVE

FIG. 11.6.1.1 A Centrally Controlled DARWIN MACHINE Architecture

Each slave therefore consists essentially of two circuits, one which evolves, and
the other which does not, but is used simply to measure the fitness of the circuit which
does evolve. However, this raises a new problem. The whole point of a Darwin
Machine, besides accelerating the evolution time, is to enable the evolution of complex
circuits, in typical GP fashion. That is, the circuits which evolve, may be too complex for
human comprehension. However, the fitness measuring circuit must (at some level) be
humanly comprehensible, because it has to be humanly specifiable. At some point in the
whole procedure, a human genetic programmer must specify the fitness definition, and
provide the corresponding bitstring instruction which configures the fitness measuring
circuit.

One can imagine however that the fitness measuring circuit is itself evolved using
a simpler fitness definition. Thus a whole chain of fitness circuit evolutions becomes
possible. At the end of the chain is a bumanly comprehensible fitness definition and
corresponding configuration instruction.

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

: : !
!] !

CIRCUIT

[CONFIGURATION BITS REGISTER |

%
[CROSSOVER REGISTER | [FITNESS REGISTER |

} }

%
=i
%

FIG.11.6.12 A Distributed DARWIN MACHINE Architecture & CHIP

FIG. 11.6.1.2 shows a more distributed Darwin Machine architecture, where
there is effectively no master circuit. Each chip or cell (as shown in more detail on the
RHS of the figure) is an element in a two dimensional grid. The chip design is merely
suggestive and makes absolutely no pretence at being realistic. Broadly speaking, it
would generate its own initial configuration bitstring (i.c. chromosome), which then
configures the evolvable circuit. For the author, this evolvable circuit would be a
hardware implementation of a GenNet or circuit of GenNets. However, since the idea of
evolvable hardware is quite general, the evolvable circuit could be virtually anything. It is
this penerality which makes the Darwin Machine concept so potentially interesting for the
electronics industry.

Once the evolvable circuit is configured, its outputs are sent to the fitness
measuring circuit which measures the evolvable circuit's fitness. Various algorithms
could be implemented. For example, if the parental fitness value is higher than the
child's, then the child's mutation(s) can be undone, and a new mutation is tried.
Occasionally, for example, after a considerable number of mutations, portions of
chromosomes could be exchanged between neighboring cells.

A lot more research needs to be undertaken on parallel implementations of GAs,
so that improved Darwin Machine architectures can be conceived. The literature on

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

(R

parallel GAs is still rather small (e.g. see papers in [GA 1989], [GA 1991], [PPSN
1991], [PPSN 1992]).

At the beginning of 1993, when the author switched labs from ETL to ATR,
several people in the author's former ETL section were involved with evolvable hardware
research. For example, Higuchi et al had successfully performed a software simulation of
the evolution of a GAL 16V8 chip [Lattice 1992] used to solve the 6-multiplexor problem
[Higuchi et al 1992]. What was evolved (actually the hardware evolution was simulated)
was a combinatorial circuit which took two address bits to channel one of four input
channels to the single output channel. As far as the author knows, this was the world's
first evolved (simulated) circuit. Higuchi also simulated the evolution of a GAL 16V8
chip which functioned as a 3 bit counter (i.. a sequential circuit).

However, even if one succeeds in building a Darwin Machine, there remains
another problem, and that is how does one evolve motions of real world biots? For
example, imagine that one wishes to evolve the circuits of a neural controlier which sends
instructions to the legs of a real world (physical) biot to make it walk. Measuring the
fitness of such a creature takes a long time, namely minutes, rather than milliseconds as
in a computer simulation. Thus evolving such a controller may be a painfully slow
process. The size of the chromosome population would need to be very small, and
techniques would need to be devised to shorten the mechanical fitness measuring time.

One way round this problem might be to simulate as closely as possible the real
world biot's mechanics and evolve a "ball park” set of chromosomes for a particular
motion. These chromosomes could then be ported to the real world biot (one at a time fo a
single biot, or in parallel to a set of identical biots) for some fitness polishing. If the
simulation is reasonably "real world accurate” then this should accelerate the evolution.

Using these technigues, one can probably build up a library of motion GenNets,
which could be stored in ROMs and linked to a common bus to the effectors (legs, arms
etc). The real challenge in building biots, is evolving the middle decision layer. In the
human brain, only a small minority of neurons are concerned with detector input and
motion output. Most neurons are concerned with internal chores, such as building
associations between multisensor inputs, or for storing memories, or for constructing
speech, ete etc. The evolution of these internal circuits would be ideal for Darwin
Machines, because it would not require the real world mechanical speeds to measure the
fitnesses of motions. One could then evolve increasingly complex neural circuits to
perform increasingly complex functions, but at computer hardware speeds.

FPGAs, HDPLDs, and Hardware Accelerators

This few paragraphs present the above ideas in a little more detail. This subsection
is not a presentation of completed work. Research projects based on the evolvable
hardware and Darwin Machine concepis are presently underway at both ETL and at the
author's present lab at ATR. (See the Postscript).

One of the aims of this subsection is to persuade more GA, ALife, and Neural
Network people to get into electronics, with the intention of filling in the details, which at
the present time are lacking here. It is hoped that the basic notion of "evolvable
hardware”, or "software configurable hardware”, and hence the possibility of building
genuine Darwin Machines within a year or so, will be sufficiently inspiring to motivate
readers to start talking with colleagues in electronics about how to build Darwin Machines
in ifty-gritty detail.

There appear to be two main approaches to Darwin Machine design. One can
either evolve the hardware directly, using technologies which underlie such devices as
FPGAs or HDPLDs (whose characteristics will be described shortly), or one can use

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

special hardware accelerators, which are special hardware boxes designed to accelerate
the software simulation of hardware designs containing up to several hundred thousand
logic gates. To gather information on FPGAs, one might try contacting Xilinx
Corporation (San Jose, CA). For HDPLDs (High Density Programmable Logic
Devices), try Lattice Corporation (Hillsboro, Oregon), and for hardware accelerators, try
Zycad Corporation (Menlo Park, CA). For a general overview of such devices, see
[Broesch 1991].

If one uses a hardware accelerator, it might be possible to evolve at a higher level
of abstraction than at individual gate level, as would be the case with FPGAs and
HDPLDs. There are arguments both ways. FPGA and HDPLD chips are rather cheap
now, around several tens of dollars, whereas a hardware accelerator costs tens of
thousands of dollars. What one might gain in terms of flexibility of evolutionary level
with a hardware accelerator, might be more than offset by its price, compared to FPGA
or HDPLD gate level evolution.

We present now a more detailed description of one of the software configurable
hardware devices, namely FPGAs (Field Programmable Gate Arrays). A similar story
could also be given for HDPLDs (High Density Programmable Logic Devices). This
description of FPGAs is provided to give the reader unfamiliar with such devices, a feel
for what software configurable hardware can do. However, as will be shown shortly,
these devices in their present form, are probably unsuitable to serve as a basis for
evolvable hardware.

FIG. 11.6.1.3 shows a fairly typical FPGA chip architecture. It consists of three
basic element types :- CLBs (Configurable Logic Blocks), T0Bs (Input Output Blocks),
and Interconnects. Quoting from Xilinx's technical literature [Xilinx 1991], "Like a
microprocessor, the ... device is a program-driven logic device. The functions of the ...
configurable logic blocks and I/O blocks, and their interconnections, are controlled by a
configuration program stored in an on-chip memory. The configuration program is
ioaded automatically from an gxternal memory on POwer-up or on command, or is
programmed by a microprocessor as a part of systcm initialization". "Since ... FPGAs
can be re-programmed an unlimited number of times, they can be used in innovative
designs where hardware is changed dynamically ...".

9
L]

e e i o

T G R
e e e i R e
s e W Qo e
s O o B v M e i
s (O v Ol s Qi il

AT R

L

[l [l

b X

Input/Cutput Block Configurable Logic Block

B

/

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

FIG. 11.6.1.3 FPGA ARCHITECTURE

The CLBs (Configurable Logic Blocks) consist essentially of "programmable
combinatorial logic and storage registers. The combinatorial logic section of the block is
capable of implementing any Boolean function of its input variables ... " (usually
between 4 and 9 input lines). The [/O Blocks can be programmed to connect CLBs to the
input/output pins of the FPGA chip. The interconnects (which run vertically and
horizontally between the columns and rows of the CLBs) are used to connect the CLBs to
other CLBs or to IOBs. The number of CLBs in a (Xilinx) FPGA ranges from 64 up to
900. The number of IOBs ranges from 58 to 240. The number of equivalent gates ranges
from 1200 to 20,000. In the Xilinx 4000 series, the internal RAM configuration memory
can range in length from 2000 to 28,800 bits. (Note, it is this configuration memory,
which may serve as the chromosome for the circuit evolution).

In the case of a hardware accelerator, its input is usually in the form of VHDL
(i.e. VHSIC (i.e. very high speed integrated circuit) Hardware Description Language).
The accelerator then uses this description to simulate the hardware device so described.

Evolvable Chip Research

The section of the lab (ETL) in which the author works, recently purchased a
software configurable hardware development system to help explore the concept of
evolvable hardware, and for other purposes. For those interested, it was a Lattice
Corporation ispLSI 1032 system. As a result of this purchase, the author became
convinced that there were too many problems with such systems for them to be
immediately suitable as a means to evolve hardware. The main obstacle is speed. For the
evolvablc hardware concept to be useful, it needs to satisfy at least two requirements.
One is that the circuits evolved be both functional and too complex for human
understanding, otherwise they could be humanly designed in the traditional way. The
other requirement is that the circuits be evolved quickly, i.e. a lot more quickly than
simulating their evolution in software using a general purpose computer, otherwise it
would be easier and cheaper just to use computer simulation.

The designers of FPGAs and HDPLDs did not have the concept of evolvable
hardware in mind when they conceived their products. What they did have in mind was
the idea that a generic hardware device could be wired up by software, to meet the
requirements of individual users, and that the configuration could be changed easily and
quickly (e.g. in less than an hour) by those users, when design modifications in their
hardware became necessary. These generic devices became very popular amongst
clectronic engineers. They enabled the number of chips on a board to be reduced, and
they increased the speed with which new hardware designs could be built and tested.

However, when one begins thinking of using such devices as a means to evolve
hardware, there are several problems. Consider the following :-

a) The configuration bitstring (i.e. the software instruction which is used to
configure or wire up the generic device) is inputted serially, i.e. one bit at a time,
for thousands of bits. Even if one "mutates” only one bit, the whole bitstring has
to be re-inputted (serially). This “downloading” typically takes about 30 seconds.

b) The routing, i.e. the choice of connections between the logic blocks and the /O
blocks is done by software and usually takes several minutes, depending upon the
complexity of the circuit.

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

c) Generating the fuse map (i.e. mapping all the routes between logic and I/O blocks
to "fusible” gates, to generate the so-called "JEDEC file") takes about a minute.

d) Most of the details as to how the circuit is wired up are company secrets, so one
would be unable to know which bits in the bit string corresponded to which
fusible gates.

But still, this process is far quicker than the nsual time taken to change a hardware
design (i.e. days to weeks), but for hardware evolution, it is unacceptable. It would be
quicker to simulate in software. But, the technologies underlying these software
configurable hardware devices can be used to design special evolvable chips, which
could be used in special architectures to build Darwin Machines.

What is needed is an "evolvable chip" which can be sent a configuring bit string
(partially) in parallel, e.g. 64 bits at a time. The chip would store cach 64 bit "slice” of the
configuring bit string (which may be thousands of bits long) into its "chromosome
register”. This (partially) parallel downloading need only be done once. The downloaded
chromosome then remains in the register, to be subjected to mutation. To mutate one bit
of the chromosome, the chip could be sent a "mutation address” (e.g. 16 bits), which
causes a single bit in the chromosome to flip. Occasionally, portions of chromosomes
could be swapped between two devices.

Further work then needs to be undertaken to design a whole system of such
evolvable chips. A lot of work recently has been devoted to the parallelization of Genetic
Algorithms [e.g see papers in GA 1989, GA 1991, PPSN91]. The ideas contained in
these papers will very probably be needed (perhaps in modified form) to build
paralielized evolvable chip systems. For example, how frequently should one crossover
chromosomes (a time costly operation), or should one rely largely on mutation etc. There
are many possible parallel GA algorithms.

However, the real message of this subsection is that the technologies to build such
evolvable chips exist today, ¢.g. EEPROM and SRAM. What is needed is a research
effort to design evolvable chips and systems, using these existing technologies. The
anthor would like to make an appeal that such research be initiated in many research labs
around the world.

The Remaining Challenges

Many challenges remain, if one wishes to use Darwin Machines to evolve
electronic (neural) circuits and artificial nervous systems, €.g.

a) How are evolvable chips systems to be configured so as to behave like neurons?
b) How are fitness circuits to be designed?
¢) How are GenNet modules to be combined into higher level circuits?

Research work is also currently underway in other labs to software configure
analog (as distinct from digital) hardware [e.g. Ning et al 1991]. This work would
obviously be useful for the evolution of the author's (analog) GenNets. In time, if the
concept of the Darwin Machine proves useful, software configurable hardware devices
might be designed with Darwin Machine applications specifically in mind. The author's
current lab (ATR in Japan) is setting up a Darwin Machine research project. (See the
Postscript). We hope to be the first in the world to simulate and build a true Darwin
Machine.

Hoofdstuk 11 - paragraaf' 11.6 en 11.6.1

3w

But, if it is not ATR which builds the world's first Darwin Machine, it will
probably be ETL, thanks to Higuchi's pioneering efforts [Higuchi et al 1992]. Higuchi
was the author's colleague and room mate at ETL in 1992. Higuchi

simulated the evolution of a relatively simple software-configurable circuit, having heard

the author give a section talk in the summer of 1992 on the idea of evolvable hardware.
The hardware circuit whose evolution they simulated, was a GAL (Generic Array Logic)
16V8A chip, (manufactured by Lattice Corporation, Hillsboro, Oregon), which is a much
simpler version of an FPGA. The (simulated) circuit was used to evolve solutions to the
6-multiplexer problem (i.e. 4 binary input data channels, 2 control bits, and 1 binary
output channel, where the 2 control bits determine which one of the four binary input data
channels will be passed to the output channel). See section 9.9. The fitness of the
evolving (simulated) circuit, was measured using a conventional software approach. If a
satisfactory solution was found, it was used as the configuration instruction bitsiring (of
length 268 bits) for the GAL16V8A chip. This experiment showed that the idea of
evolvable hardware works (at least for the chip concerned), because there was an obvious
equivalence between evolving the chip directly in hardware, and simulating its hardware
evolution. The obvious difference is processing speed (i.e. chip processing speed vs.
software simulation speed). However, in terms of human system-development speed, it
was quicker in this case to software simulate (a process which takes a few days) than to
set up a hardware breadboard system (which would take months). Presumably, with
greater experience, direct hardware evolution will become practical, once the supporting
system tools become available.

Before finishing this subsection, the author would like to make two remarks. The
first concerns the potential importance of the concepts of evolvable hardware and Darwin
Machines to the electronics industry, and the second concerns the probable link which
will grow between Darwin Machines and nanotechnology.

The electronics industry is one of the biggest and richest in the world, right up
there with antomobiles and oil. If circuits which are evolved can become more complex
and more functionally useful than humanly designed circuits, then the concept of the
Darwin Machine may revolutionize an industry worth many billions of dollars world
wide. This prospect oughtf to stimulate a lot more research into what the auther hopes will
prove to be a very profitable idea, namely that of "evolvable hardware". It is possible that
we may see "hardware evolution" or Darwin Machine "start-up” companies within a few
years.

It is likely (and it is certainly the author's intention) that a link will grow between
Darwin Machines and nanotechnology. (See the Postscript). Nanotechnology [Carter et al
1988, Schneiker 1989, Drexler 1992] is molecular scale engineering, where the intention
is to build nano scale robots (nanots) which pick up atoms here and put them there to
build any substance, including copies of the same nanots. Both the ETL and ATR labs
are heavily involved in nanotech, because it is considered a critical technology that will
dominate 21st century science and economics. However, building such "Avogadro
Machines" (with a trillion trillion components) with demand self assembly techniques to
be practical. But the complexities will also be enormous. Therefore it will be virtually
impossible to predict function from structure with these self assembled Avogadro
Machines. Therefore GP techniques will be needed to build/evolve them, and hence the
need for molecular scale Darwin Machines. Molecular scale self assembling manufacture
has been called "embryofacture” by the author. It looks as though the Darwin Machine
concept will have a critically important future.

