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Designers of multimedia systems face three significant challenges in
today's ultra-competitive marketplace: Our products must do more,
cost less, and be brought to the market quicker than ever. Though

each of these goals is individually attainable, the hat trick is
generally unachievable with traditional design and implementation
techniques. Fortunately, some new techniques are emerging from

the study of reconfigurable computing that make it possible to
design systems that satisfy all three requirements simultaneously. 

Although originally proposed in the late 1960s by a researcher at UCLA,
reconfigurable computing is a relatively new field of study. The decades-long
delay had mostly to do with a lack of acceptable reconfigurable hardware.
Reprogrammable logic chips like field programmable gate arrays (FPGAs) have
been around for many years, but these chips have only recently reached gate
densities making them suitable for high-end applications. (The densest of the
current FPGAs have approximately 100,000 reprogrammable logic gates.) With
an anticipated doubling of gate densities every 18 months, the situation will
only become more favorable from this point forward.

One of our clients, TSI TelSys, has been developing and using reconfigurable
computing technologies for almost three years. Their primary product is
groundstation equipment for satellite communications. This application
involves high-rate communications, signal processing, and a variety of network
protocols and data formats. What follows is an introduction to the terminology
and techniques we have developed as our experience with reconfigurable
computing has grown. I hope that this explanation will help other system
designers benefit from the work that's already been done.



What is Reconfigurable Computing?
When we talk about reconfigurable computing we’re usually talking about
FPGA-based system designs. Unfortunately, that doesn’t qualify the term
precisely enough. System designers use FPGAs in many different ways. The
most common use of an FPGA is for prototyping the design of an ASIC. In this
scenario, the FPGA is present only on the prototype hardware and is replaced
by the corresponding ASIC in the final production system. This use of FPGAs
has nothing to do with reconfigurable computing.

However, many system designers are choosing to leave the FPGAs as part of
the production hardware. Lower FPGA prices and higher gate counts have
helped drive this change. Such systems retain the execution speed of dedicated
hardware but also have a great deal of functional flexibility. The logic within
the FPGA can be changed if or when it is necessary, which has many
advantages. For example, hardware bug fixes and upgrades can be
administered as easily as their software counterparts. In order to support a new
version of a network protocol, you can redesign the internal logic of the FPGA
and send the enhancement to the affected customers by email. Once they’ve
downloaded the new logic design to the system and restarted it, they’ll be able
to use the new version of the protocol. This is configurable computing;
reconfigurable computing goes one step further.

Reconfigurable computing involves manipulation of the logic within the FPGA
at run-time. In other words, the design of the hardware may change in response
to the demands placed upon the system while it is running. Here, the FPGA acts
as an execution engine for a variety of different hardware functions — some
executing in parallel, others in serial — much as a CPU acts as an execution
engine for a variety of software threads. We might even go so far as to call the
FPGA a reconfigurable processing unit (RPU).

Reconfigurable computing allows system designers to execute more hardware
than they have gates to fit, which works especially well when there are parts of
the hardware that are occasionally idle. One theoretical application is a smart
cellular phone that supports multiple communication and data protocols,
though just one a time. When the phone passes from a geographic region that is
served by one protocol into a region that is served by another, the hardware is
automatically reconfigured. This is reconfigurable computing at its best, and
using this approach it is possible to design systems that do more, cost less, and
have shorter design and implementation cycles.

What are the Advantages?
Reconfigurable computing has several advantages. First, it is possible to
achieve greater functionality with a simpler hardware design. Because not all of
the logic must be present in the FPGA at all times, the cost of supporting
additional features is reduced to the cost of the memory required to store the
logic design. Consider again the multiprotocol cellular phone. It would be
possible to support as many protocols as could be fit into the available on-board
ROM. It is even conceivable that new protocols could be uploaded from a base
station to the handheld phone on an as-needed basis, thus requiring no
additional memory.

 The second advantage is lower system cost, which does not manifest itself



exactly as you might expect. On a low-volume product, there will be some
production cost savings, which result from the elimination of the expense of
ASIC design and fabrication. However, for higher-volume products, the
production cost of fixed hardware may actually be lower. We have to think in
terms of lifetime system costs to see the savings. Here, technical obsolescence
drives up the cost of systems based on fixed-hardware designs. Systems based
on reconfigurable computing are upgradable in the field. Such changes extend
the useful life of the system, thus reducing lifetime costs.

The final advantage of reconfigurable computing is reduced time-to-market.
The fact that you’re no longer using an ASIC is a big help in this respect. There
are no chip design and prototyping cycles, which eliminates a large amount of
development effort. In addition, the logic design remains flexible right up until
(and even after) the product ships. This allows an incremental design flow, a
luxury not typically available to hardware designers. You can even ship a
product that meets the minimum requirements and add features after
deployment. In the case of a networked product like a set-top box or cellular
telephone, it may even be possible to   make such enhancements without
customer involvement!

Reconfigurable Hardware
Traditional FPGAs are configurable, but not run-time reconfigurable. Many of
the older FPGAs expect to read their configuration out of a serial EEPROM, one
bit at a time. And they can only be made to do so by asserting a chip reset
signal. This means that the FPGA must be reprogrammed in its entirety and
that its previous internal state cannot be captured beforehand. Though these
features are compatible with configurable computing applications, they are not
sufficient for reconfigurable computing.

In order to benefit from run-time reconfiguration, it is necessary that the FPGAs
involved have some or all of the following features. The more of these features
they have, the more flexible can be the system design.

On-the-Fly Reprogrammability 
Whenever possible, we’d like to avoid resetting the FPGA, mostly because
it takes a lot of time. Ideally, we could just stop the clock going to some or
all of the chip, change the logic within that region, and restart the
clock. That way, there isn’t as much wasted time, or configuration
overhead. The more configuration overhead there is the more likely that
the system performance will be unacceptably below that of a fixed-
hardware version. Of course, a small performance hit (like stopping the
clock) is itself a reasonable trade-off for the added benefits of hardware
flexibility. 

  
Partial Reprogrammability 

Even better would be the ability to leave most of the internal logic in place
and change just one part. The Atmel 40K and Xilinx 62xx series FPGAs
have such a feature. Any gate or set of gates may be changed without
affecting the state of the others. Figure 1 shows how this might be used in
practice. It will always be much faster to change a small piece of the logic
than the entire FPGA contents. 

  



Externally-Visible Internal State 
If you can see the internal state of the FPGA at any time, then it is also
possible to capture that state and save it for later use. For example, the
Xilinx 62xx series FPGAs feature a 32-bit data bus called the FastMAP
processor interface. This allows the internal state of the FPGA to be read
and written just like memory and makes it possible to “swap” hardware
designs in much the same way that pages of virtual memory are swapped
into and out of physical memory. 

Figure 1. Partial Reprogrammability Allows Partial Changes

Hardware Objects
Before going on, we need to define a new term. A hardware object is a
functional or logical hardware component that contains its own configuration
and state information. In other words, it is a piece of logic that can be executed
in an RPU. Hardware objects are position-independent, or relocatable, to allow
us to execute the hardware object from any convenient and available position
within the chip. To actually take that leap requires a few assumptions.

Figure 2. Relocatable Hardware Objects are Position-Independent

First, if we’re going to be working with relocatable logic blocks, it is desirable
to add constraints on their size and shape. These constraints limit the number
of possible positions within the FPGA and make run-time decision-making more
efficient and effective. The actual constraints should be based on the features
of a particular FPGA or FPGA family. However, the best constraints require that
all hardware objects be rectangular in shape and have edge lengths that are
multiples of some unit length (called the hardware page size), which may be
any convenient number of gates. For example, page sizes of 4 and 16 gates
work very well for the Xilinx 62xx series FPGAs because these parts have
additional routing resources at each of those intersections, which makes
routing between hardware objects or a hardware object and its I/O pins much
easier.



Second, it is desirable to define a standard look and feel for hardware object
interfaces. The idea here is to make interobject routing easier by defining
standard interfaces between them. This is especially important if routing
between objects will be performed on-the-fly, and it also paves the way for
greater hardware object re-use. By standardizing the interfaces of all hardware
objects, it is possible to maintain libraries of frequently used objects and to
quickly build larger designs from these smaller components. In some cases, it
may even be possible to purchase third-party hardware objects rather than
designing your own.

You may be wondering how you can build a “generic” hardware object that will
work in any system. To do that, we need to make one final assumption. Assume
that any hardware objects that expect to interface to the world outside the RPU
(to a block of memory, the processor, a peripheral, or even another RPU) must
do so through an abstraction. This abstraction is called the hardware object
framework, which is a ring of logic that is always present within the RPU and
physically located along the outer edges. The framework provides a set of
standard interfaces to memory and peripheral devices located outside of the
RPU. This ring of logic shrinks the available space for executing hardware
objects (see Figure 3), but that is a small price to pay for greater hardware
object re-usability and, hence, faster design cycles.

Figure 3. A Hardware Object Framework Surrounds the Hardware Objects

Run-Time Environments
Due to the dynamic nature of reconfigurable computing, it is sometimes helpful
to have software manage the processes of:

• Deciding which hardware objects to execute and when 
• Swapping hardware objects into and out of the reconfigurable logic 
• Performing routing between hardware objects or between hardware

objects and the hardware object framework. 

Of course, having software manage the reconfigurable hardware usually means
having an embedded processor or microcontroller on-board. (We expect several
vendors to introduce single-chip solutions that combine a CPU core and a block
of reconfigurable logic by year’s end.) The embedded software that runs there
is called the run-time environment and is analogous to the operating system
that manages the execution of multiple software threads. Like threads,
hardware objects may have priorities, deadlines, and contexts, etc. It is the job
of the run-time environment to organize this information and make decisions
based upon it.

The reason we need a run-time environment at all is that there are decisions to



be made while the system is running. And as human designers, we are not
available to make these decisions. So we impart these responsibilities to a piece
of software. This allows us to write our application software at a very high level
of abstraction. For example, if the application involves manipulation of images
in the JPEG format, it would be ideal to have only two blocks of logic: one for
JPEG compression, and the other for decompression. Then we could simply
hand our input data and the appropriate logic block to the run-time
environment and wait for the results. This is equivalent to saying: “Please
execute the attached hardware object and let me know when it is done. If there
are any results, please let me know as soon as they become available.”

To do this, the run-time environment must first locate space within the RPU
that is large enough to execute the given hardware object. It must then perform
the necessary routing between the hardware object’s inputs and outputs and
the blocks of memory reserved for each data stream. Next, it must stop the
appropriate clock, reprogram the internal logic, and restart the RPU. Once the
object starts to execute, the run-time environment must continuously monitor
the hardware object’s status flags to determine when it is done executing. Once
it is done, the caller can be notified and given the results. The run-time
environment is then free to reclaim the reconfigurable logic gates that were
taken up by that hardware object and to wait for additional requests to arrive
from the application software.

By assigning all of these tasks to a special piece of software, we hope to make it
possible to develop generic run-time environments. Much as there is a market
for commercial operating systems for CPUs, we expect a market for commercial
run-time environments for RPUs will emerge if reconfigurable computing
becomes popular. That would save system designers even more time by
allowing them to purchase a run-time environment rather than design their
own. At that point, system design becomes a matter of purchasing or
developing the required hardware object libraries, configuring a third-party
run-time environment, and writing the application software--a truly efficient
system development paradigm.

Internally, our run-time environment can be thought of as a series of three
layers (see Figure 4). The device abstraction layer is the lowest level and is
responsible for hiding the details of a particular FPGA or FPGA family. This is
analogous to the parts of an operating system that must be written in assembly
language because they are processor-specific. The device abstraction layer can
answer the following questions about the hardware: How many FPGAs are
present? What types are they? What is the hardware page size? What are their
dimensions (height and width as multiples of the hardware page size)? What
routing resources are available at the edge of each hardware page? The device
abstraction layer also provides a simple read/write interface for the layer
above.



Figure 4. A Run-Time Environment Contains Three Layers

The middle layer is responsible for placement and routing of hardware objects.
It maintains a logical representation of the free space within the RPU and
decides where each object will be physically located within the device. It is also
responsible for adding routing between hardware objects or between one
hardware object and the hardware object framework. This is the most
complicated layer of the three.

The uppermost layer is called the object scheduler. It provides an application
programming interface (API) that makes using the RPUs easy for the
application programmer and is responsible for deciding which hardware objects
are currently running. This decision may be based on any convenient
scheduling algorithm. For example, first-come first-serve, round-robin, and
priority-based schemes are reasonable choices. But in order to implement the
latter pair, it would be necessary to first implement hardware object swapping.
Hardware object swapping involves saving the current state of a running piece
of logic and later restoring it, and is only possible in systems that employ
FPGAs with externally visible internal states.

Looking Forward
The principal benefits of reconfigurable computing are the ability to execute
larger hardware designs with fewer gates and to realize the flexibility of a
software-based solution while retaining the execution speed of a more
traditional, hardware-based approach. This makes doing more with less a
reality.

In our own business we have seen tremendous cost savings, simply because our
systems do not become obsolete as quickly as our competitors’. This has even
led us to use the marketing slogan “Obsolescence is Obsolete” because
reconfigurable computing enables the addition of new features in the field,
allows rapid implementation of new standards and protocols on an as-needed
basis, and protects their investment in computing hardware.

Whether you do it for your customers or for yourselves, you should at least
consider using reconfigurable computing in your next design. You may find, as
we have, that the benefits far exceed the initial learning curve. And as
reconfigurable computing becomes more popular, these benefits will only
increase. The idea of buying third-party hardware objects and run-time
environments and simply combining them in new and interesting ways to create
a product is certainly forward-looking, but it may not be that far over the
horizon. 
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